Skip to main content
Log in

Effect of exercise on glutamine metabolism in macrophages of trained rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study investigated the effect of exercise on glutamine metabolism in macrophages of trained rats. Rats were divided into three groups: sedentary (SED); moderately trained (MOD) rats that were swim trained 1 h/day, 5 days/week for 6 weeks; and exhaustively trained (EXT) rats that were similarly trained as MOD for 5 weeks and, in the 6th week, trained in three 1-h sessions/day with 150 min of rest between sessions. The animals swam with a load equivalent to 5.5% of their body weight and were killed 1 h after the last exercise session. Cells were collected, and glutamine metabolism in macrophage and function were assayed. Exercise increased phagocytosis in MOD when compared to SED (34.48 ± 1.79 vs 15.21 ± 2.91%, P < 0.05); however, H2O2 production was higher in MOD (75.40 ± 3.48 nmol h × 105 cell−1) and EXT (79.20 ± 1.18 nmol h × 105 cell−1) in relation to SED (32.60 ± 2.51 nmol h × 105 cell−1, P < 0.05). Glutamine consumption increased in MOD and EXT (26.53 ± 3.62 and 19.82 ± 2.62 nmol h × 105 cell−1, respectively) relative to SED (6.72 ± 0.57 nmol h × 105 cell−1, P < 0.05). Aspartate increased in EXT (9.72 ± 1.14 nmol h × 105 cell−1) as compared to SED (1.10 ± 0.19 nmol h × 105 cell−1, P < 0.05). Glutamine decarboxylation was increased in MOD (12.10 ± 0.27 nmol h × 105 cell−1) and EXT (16.40 ± 2.17 nmol h × 105 cell−1) relative to SED (1.10 ± 0.06 nmol h × 105 cell−1, P < 0.05). This study suggests an increase in macrophage function post-exercise, which was supported by enhanced glutamine consumption and metabolism, and highlights the importance for glutamine after exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ardawi MS, Newsholme EA (1983) Glutamine metabolism in lymphocytes of the rat. Biochem J 212:835–842

    PubMed  CAS  Google Scholar 

  • Bassit RA, Sawada LA, Bacurau RF et al (2000) The effect of BCAA supplementation upon the immune response of triathletes. Med Sci Sports Exerc 32:1214–1219

    Article  PubMed  CAS  Google Scholar 

  • Bergmeyer HU, Bernt E, Mölering HG (1974) l-Aspartate and l-asparagine. In: Bergmeyer HU et al (eds) Methods of enzimatic analysis. Academic Press, London, pp 1196–1201

    Google Scholar 

  • Bernet E, Bergmeyer HU (1974) l-Glutamate UV-assay glutamate dehydrogenase and NAD. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, London, pp 1704–1708

    Google Scholar 

  • Castell LM (2002) Can glutamine modify the apparent immunodepression observed after prolonged, exhaustive exercise? Nutrition 18:371–375

    Article  PubMed  CAS  Google Scholar 

  • Castell L (2003) Glutamine supplementation in vitro and in vivo, in exercise and in immunodepression. Sports Med 33:323–345

    Article  PubMed  Google Scholar 

  • Castell LM, Poortmans JR, Newsholme EA (1996) Does glutamine have a role in reducing infections in athletes? Eur J Appl Physiol Occup Physiol 73:488–490

    Article  PubMed  CAS  Google Scholar 

  • Costa Rosa LF (2004) Exercise as a time-conditioning effector in chronic disease: a complementary treatment strategy. Evid Based Complement Alternat Med 1:63–70

    Article  PubMed  Google Scholar 

  • Costa Rosa LF, Safi DA, Cury Y et al (1996) The effect of insulin on macrophage metabolism and function. Cell Biochem Funct 14:33–42

    Article  PubMed  CAS  Google Scholar 

  • Cunha WD, Friedler G, Vaisberg M et al (2003) Immunosuppression in undernourished rats: the effect of glutamine supplementation. Clin Nutr 22:453–457

    Article  PubMed  CAS  Google Scholar 

  • De La Fuente M, Martin MI, Ortega E (1990) Changes in the phagocytosis function of peritoneal macrophages from old mice after strenuous physical exercise. Comp Immunol Microbiol Infect Dis 13:189–198

    Article  Google Scholar 

  • De La Fuente M, Martin MI, Ortega E (1993) Effect of physical exercise n the phagocytic function of peritoneal macrophage from Swiss mice. Comp Immunol Microbiol Infect Dis 16:29–37

    Article  Google Scholar 

  • Dos Santos Cunha WD, Giampietro MV, De Souza DF et al (2004) Exercise restores immune cell function in energy-restricted rats. Med Sci Sports Exerc 36:2059–2064

    Article  PubMed  Google Scholar 

  • Fehr HG, Lotzerich H, Michna H (1988) The influence of physical exercise on peritoneal macrophages functions: histochemical and phagocytic studies. Int J Sports Med 9:77–81

    Article  PubMed  CAS  Google Scholar 

  • Forner MA, Barriga C, Rodriguez AB et al (1995) A study of the role of corticosterone as a mediator in exercise-induced stimulation of murine macrophage phagocytosis. J Physiol 488:789–794

    PubMed  CAS  Google Scholar 

  • Gobatto CA, Mello MAR, Sibuya CY et al (2001) Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol 130:21–27

    Article  PubMed  CAS  Google Scholar 

  • Hiscock N, Pedersen BK (2002) Exercise-induced immunodepression: plasma glutamine is not the link. J Appl Physiol 93:813–822

    PubMed  CAS  Google Scholar 

  • Koyama K, Kaya M, Tsujita J et al (1998) Effects of decreased plasma glutamine concentrations on peripheral lymphocyte proliferation in rats. Eur J Appl Physiol Occup 77:25–31

    Article  CAS  Google Scholar 

  • Mackinnon LT (2000) Special feature for the Olympics: effects of exercise on the immune system: overtraining effects on immunity and performance in athletes. Immunol Cell Biol 78:502–509

    Article  PubMed  CAS  Google Scholar 

  • Martins E Jr, Fernandes LC, Bartol I et al (1998) The effect of melatonin chronic treatment upon macrophage and lymphocyte metabolism and function in Walker-256 tumor-bearing rats. J Neuroimmunol 82:81–89

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JB, Paquet AJ, Pizza FX et al (1996) The effect of moderate aerobic training on lymphocyte proliferation. Int J Sports Med 17:384–389

    Article  PubMed  CAS  Google Scholar 

  • Newsholme EA, Calder PC (1997) The proposed role of glutamine in some cells of the immune system and speculative consequence for the whole animal. Nutrition 13:728–730

    Article  PubMed  CAS  Google Scholar 

  • Newsholme EA, Crabtree B, Ardawi MSM (1985) Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Quart J Exp Physiol 70:473–489

    CAS  Google Scholar 

  • Newsholme P, Gordon S, Newsholme EA (1987) Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J 242:631–636

    PubMed  CAS  Google Scholar 

  • Newsholme P, Costa Rosa LF, Newsholme EA et al (1996) The importance of fuel metabolism to macrophage function. Cell Biochem Funct 14:1–10

    Article  PubMed  CAS  Google Scholar 

  • Nielsen HB (2003) Lymphocyte responses to maximal exercise: a physiological perspective. Sports Med 33:853–867

    Article  PubMed  Google Scholar 

  • Nieman DC (2000) Special feature for the Olympics: effects of exercise on the immune system: exercise effects on systemic immunity. Immunol Cell Biol 78:496–501

    PubMed  CAS  Google Scholar 

  • Nieman DC (2007) Marathon training and immune function. Sports Med 37:412–415

    Article  PubMed  Google Scholar 

  • Nieman DC, Pedersen BK (1999) Exercise and immune function. Recent developments. Sports Med 27:73–80

    Article  PubMed  CAS  Google Scholar 

  • Ortega E (2003) Neuroendocrine mediators in the modulation of phagocytosis by exercise: physiological implications. Exerc Immunol Rev 9:70–93

    PubMed  Google Scholar 

  • Ortega E, Rodriguez MJ, Barriga C et al (1996) Corticosterone, prolactin and thyroid hormones as hormonal mediators of the stimulated phagocytic capacity of peritoneal macrophages after high-intensity exercise. Int J Sports Med 17:149–155

    Article  PubMed  CAS  Google Scholar 

  • Ortega E, Marchena JM, García JJ et al (2001) Phagocytic function in cyclists: correlation with catecholamines and cortisol. J Appl Physiol 91:1067–1072

    Google Scholar 

  • Ortega E, Marchena JM, García JJ et al (2005) Norepinephrine as mediator in the stimulation of phagocytosis induced by moderate exercise. Eur J Appl Physiol 93:714–718

    Article  PubMed  CAS  Google Scholar 

  • Parry-Billings M, Budgett R, Koutedakis Y et al (1992) Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Med Sci Sports Exerc 24:1353–1358

    PubMed  CAS  Google Scholar 

  • Pedersen BK, Toft AD (2000) Effects of exercise on lymphocytes and cytokines. Br J Sports Med 34:246–251

    Article  PubMed  CAS  Google Scholar 

  • Peijie C, Hongwu L, Fengpeng X et al (2003) Heavy load exercise induced dysfunction of immunity and neuroendocrine responses in rats. Life Sci 72:2255–2262

    Article  PubMed  CAS  Google Scholar 

  • Pick E, Mizel D (1981) Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods 46:211–226

    Article  PubMed  CAS  Google Scholar 

  • Rowbottom DG, Keast D, Godlman C et al (1995) The haematological, biochemical and immunological profile of athletes: suffering from the overtraining syndrome. Eur J Appl Physiol 70:502–509

    Article  CAS  Google Scholar 

  • Rowbottom DG, Keast D, Morton AR (1996) The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med 21:80–97

    Article  PubMed  CAS  Google Scholar 

  • Stout RD, Suttles J (2005) Immunosenescence and macrophage functions plasticity: dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev 205:66–71

    Article  Google Scholar 

  • Sugiura H, Sugiura H, Nishida H et al (2001) Effects of different durations of exercise on macrophage functions in mice. J Appl Physiol 90:789–794

    Article  PubMed  CAS  Google Scholar 

  • Sugiura H, Nishida H, Sugiura H et al (2002) Immunomodulatory action of chronic exercise on macrophage and lymphocyte cytokine production in mice. Eur J Appl Physiol 174:247–256

    CAS  Google Scholar 

  • Walsh NP, Blannin AK, Robson PJ et al (1998) Glutamine, exercise and immune function: links and possible mechanisms. Sports Med 26:177–189

    Article  PubMed  CAS  Google Scholar 

  • Windmueller HG, Spaeth AE (1974) Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 249:5070–5079

    PubMed  CAS  Google Scholar 

  • Woods JA, Davis JM, Mayer EP et al (1994) Effects of exercise on macrophage activation for antitumor cytotoxicity. J Appl Physiol 76:2177–2185

    PubMed  CAS  Google Scholar 

  • Woods JA, Vieira VJ, Keylock KT (2006) Exercise, inflammation, and innate immunity. Neurol Clin 24:585–599

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. L.F.B.P. Costa Rosa for his bountiful knowledge imparted to us throughout his lifetime. He was a great scientist, friend and an exemplary individual. This paper is dedicated to him. This study was supported by Fundação de Amparo a Pesquisa de São Paulo (FAPESP) # 01/13766-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Vagner Thomatieli dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, R.V.T., Caperuto, É.C., de Mello, M.T. et al. Effect of exercise on glutamine metabolism in macrophages of trained rats. Eur J Appl Physiol 107, 309–315 (2009). https://doi.org/10.1007/s00421-009-1130-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1130-6

Keywords

Navigation