Skip to main content
Log in

Effects of short-term endurance exercise training on vascular function in young males

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

We investigated effects of 6 days of endurance exercise training [cycling at 65% of peak oxygen consumption (VO2peak) for 2 h a day on six consecutive days] on vascular function in young males. Measures of VO2peak, arterial stiffness, calf vascular conductance and heart rate variability were obtained pre- and post-training. Indices of arterial stiffness were obtained by applanation tonometry to determine aortic augmentation index normalized to a heart rate of 75 bpm (AI x @75 bpm), and central and peripheral pulse wave velocity (CPWV, PPWV). Resting and maximal calf vascular conductances were calculated from concurrent measures of blood pressure and calf blood flow using venous occlusion strain-gauge plethysmography. Time and frequency domain measures of heart rate variability were obtained from recording R–R intervals during supine and standing conditions. Both CPWV (5.9 ± 0.8 vs. 5.4 ± 0.8 m/s) and PPWV (9.7 ± 0.8 vs. 8.9 ± 1.3 m/s) were reduced following the training program. No significant changes were observed in AI x @75 bpm, vascular conductance, heart rate variability or VO2peak. These data indicate that changes in arterial stiffness independent of changes in heart rate variability or vascular conductance can be achieved in healthy young males following only 6 days of intense endurance exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AI x :

Aortic augmentation index

AI x @75 bpm:

Aortic augmentation index at 75 beats per minute

BF:

Blood flow

BMI:

Body mass index

BP:

Blood pressure

CPWV:

Central pulse wave velocity

eNOS:

Endothelial nitric oxide synthase

HF:

High frequency

HRV:

Heart rate variability

LF:

Low frequency

LF/HF:

Sympathovagal balance

ln:

Natural logarithm

MAP:

Mean arterial pressure

NO:

Nitric oxide

nu:

Normalized units

PPWV:

Peripheral pulse wave velocity

PV:

Plasma volume

PWV:

Pulse wave velocity

RMSSD:

Root mean square of the successive R–R interval differences

SD:

Standard deviation

TP:

Total spectral power

VC:

Vascular conductance

VO2peak :

Peak oxygen consumption

References

  • Allen JD, Geaghan JP, Greenway F, Welsch MA (2003) Time course of improved flow-mediated dilation after short-term exercise training. Med Sci Sports Exerc 35:847–853

    Article  PubMed  Google Scholar 

  • Ben Driss A, Benessiano J, Poitevin P, Levy BI, Michel JB (1997) Arterial expansive remodeling induced by high flow rates. Am J Physiol 272:851–858

    Google Scholar 

  • Boutouyrie P, Bezie Y, Lacolley P, Challande P, Chamiot-Clerc P, Benetos A, de la Faverie JF, Safar M, Laurent S (1997) In vivo/in vitro comparison of rat abdominal aorta wall viscosity. Influence of endothelial function. Arterioscler Thromb Vasc Biol 17:1346–1355

    PubMed  CAS  Google Scholar 

  • Cameron J, Dart A (1994) Exercise training increases total systemic arterial compliance in humans. Am J Physiol 26:693–701

    Google Scholar 

  • Casey DP, Beck DT, Braith RW (2007) Progressive resistance training without volume increases does not alter arterial stiffness and aortic wave reflection. Exp Biol Med 232:1228–1235

    Article  CAS  Google Scholar 

  • Collier SR, Kanaley JA, Carhart RJ, Frechette V, Tobin MM, Hall AK, Luckenbaugh AN, Fernhall B (2008) Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens 22:678–686

    Article  PubMed  CAS  Google Scholar 

  • Convertino VA (1991) Blood volume: its adaptation to endurance training. Med Sci Sports Exerc 23:1338–1348

    PubMed  CAS  Google Scholar 

  • DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, Seals DR (2000) Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 102:1351–1357

    PubMed  CAS  Google Scholar 

  • Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575:901–911

    Article  PubMed  CAS  Google Scholar 

  • Goodman JM, Liu PP, Green HJ (2005) Left ventricular adaptations following short-term endurance training. J Appl Physiol 98:454–460

    Article  PubMed  Google Scholar 

  • Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, Kawamura M, Chayama K, Yoshizumi M, Nara I (2003) Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation 108:530–535

    Article  PubMed  Google Scholar 

  • Green HJ, Coates G, Sutton JR, Jones S (1991) Early adaptations in gas exchange, cardiac function and haematology to prolonged exercise training in man. Eur J Appl Physiol 63:17–23

    Article  CAS  Google Scholar 

  • Green HJ, Grant S, Bombardier E, Ranney D (1999) Initial aerobic power does not alter muscle metabolic adaptations to short-term training. Am J Physiol Endocrinol Metab 277:39–48

    Google Scholar 

  • Hautala AJ, Makikallio TH, Kiviniemi A, Laukkanen RT, Nissila S, Huikuri HV, Tulppo MP (2004) Heart rate dynamics after controlled training followed by a home-based exercise program. Eur J Appl Physiol 92:289–297

    Article  PubMed  Google Scholar 

  • Hayashi K, Sugawara J, Komine H, Maeda S, Yokoi T (2005) Effects of aerobic exercise training on the stiffness of central and peripheral arteries in middle-aged sedentary men. Jpn J Physiol 55:235–239

    Article  PubMed  Google Scholar 

  • Johnson LR, Rush JW, Turk JR, Price EM, Laughlin MH (2001) Short-term exercise training increases ACh-induced relaxation and eNOS protein in porcine pulmonary arteries. J Appl Physiol 90:1102–1110

    Article  PubMed  CAS  Google Scholar 

  • Kakiyama T, Sugawara J, Murakami H, Maeda S, Kuno S, Matsuda M (2005) Effects of short-term endurance training on aortic distensibility in young males. Med Sci Sports Exerc 37:267–271

    Article  PubMed  Google Scholar 

  • Kawano H, Tanaka H, Miyachi M (2006) Resistance training and arterial compliance: keeping the benefits while minimizing the stiffening. J Hypertens 24:1753–1759

    Article  PubMed  CAS  Google Scholar 

  • Kingwell BA, Sherrard B, Jennings GL, Dart AM (1997) Four weeks of cycle training increases basal production of nitric oxide from the forearm. Am J Physiol 272:1070–1077

    Google Scholar 

  • Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A (2001) Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236–1241

    PubMed  CAS  Google Scholar 

  • Lehmann M, Foster C, Keul J (1993) Overtraining in endurance athletes: a brief review. Med Sci Sports Exerc 25:854–862

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Miyauchi T, Kakiyama T, Sugawara J, Iemitsu M, Irukayama-Tomobe Y, Murakami H, Kumagai Y, Kuno S, Matsuda M (2001) Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci 69:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Tanabe T, Miyauchi T, Otsuki T, Sugawara J, Iemitsu M, Kuno S, Ajisaka R, Yamaguchi I, Matsuda M (2003) Aerobic exercise training reduces plasma endothelin-1 concentration in older women. J Appl Physiol 95:336–341

    PubMed  CAS  Google Scholar 

  • Maiorana A, O’Driscoll G, Dembo L, Cheetham C, Goodman C, Taylor R, Green D (2000) Effect of aerobic and resistance exercise training on vascular function in heart failure. Am J Physiol Heart Circ Physiol 279:1999–2005

    Google Scholar 

  • Maiorana A, O’Driscoll G, Taylor R, Green D (2003) Exercise and the nitric oxide vasodilator system. Sports Med 33:1013–1035

    Article  PubMed  Google Scholar 

  • Malliani A (1999) The pattern of sympathovagal balance explored in the frequency domain. News Physiol Sci 14:111–117

    PubMed  Google Scholar 

  • Martin WH, Kohrt WM, Malley MT, Korte E, Stoltz S (1990) Exercise training enhances leg vasodilatory capacity of 65-yr-old men and women. J Appl Physiol 69:1804–1809

    PubMed  Google Scholar 

  • Martin WH, Ogawa T, Kohrt WM, Malley MT, Korte E, Kieffer PS, Schechtman KB (1991) Effects of aging, gender, and physical training on peripheral vascular function. Circulation 84:654–664

    PubMed  Google Scholar 

  • Matsuda M, Nosaka T, Sato M, Ohshima N (1993) Effects of physical exercise on the elasticity and elastic components of the rat aorta. Eur J Appl Physiol Occup Physiol 66:122–126

    Article  PubMed  CAS  Google Scholar 

  • McEniery CM, Wallace S, Mackenzie IS, McDonnell B, Yasmin, Newby DE, Cockcroft JR, Wilkinson IB (2006) Endothelial function is associated with pulse pressure, pulse wave velocity, and augmentation index in healthy humans. Hypertension 48:602–608

  • Melanson EL, Freedson PS (2001) The effect of endurance training on resting heart rate variability in sedentary adult males. Eur J Appl Physiol 85:442–449

    Article  PubMed  CAS  Google Scholar 

  • Miyachi M, Iemitsu M, Okutsu M, Onodera S (1998) Effects of endurance training on the size and blood flow of the arterial conductance vessels in humans. Acta Physiol Scand 163:13–16

    Article  PubMed  CAS  Google Scholar 

  • Miyachi M, Tanaka H, Yamamoto K, Yoshioka A, Takahashi K, Onodera S (2001) Effects of one-legged endurance training on femoral arterial and venous size in healthy humans. J Appl Physiol 90:2439–2444

    PubMed  CAS  Google Scholar 

  • Mtinangi BL, Hainsworth R (1999) Effects of moderate exercise training on plasma volume, baroreceptor sensitivity and orthostatic tolerance in healthy subjects. Exp Physiol 84:121–130

    PubMed  CAS  Google Scholar 

  • Nichols WW, Edwards DG (2001) Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy. J Cardiovasc Pharmacol Ther 6:5–21

    Article  PubMed  CAS  Google Scholar 

  • Nichols WW, O’Rourke MF (1998) McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles. Oxford University Press, New York

    Google Scholar 

  • Noakes TD (2000) Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports 10:123–145

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell E, Harvey PJ, Goodman JM, De Souza MJ (2007) Long-term estrogen deficiency lowers regional blood flow, resting systolic blood pressure, and heart rate in exercising premenopausal women. Am J Physiol Endocrinol Metab 292:1401–1409

    Article  Google Scholar 

  • O’Rourke M, Staessen J, Vlachopoulos C, Duprez D, Plante G (2002) Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens 15:426–444

    Article  PubMed  Google Scholar 

  • O’Sullivan SE, Bell C (2001) Training reduces autonomic cardiovascular responses to both exercise-dependent and -independent stimuli in humans. Auton Neurosci 91:76–84

    Article  PubMed  Google Scholar 

  • Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, Miyauchi T (2007) Relationship between arterial stiffness and athletic training programs in young adult men. Am J Hypertens 20:967–973

    Article  PubMed  Google Scholar 

  • Papaioannou T, Stamatelopoulos K, Gialafos E, Vlachopoulos C, Karatzis E, Nanas J, Lekakis J (2004) Monitoring of arterial stiffness indices by applanation tonometry and pulse wave analysis: reproducibility at low blood pressures. J Clin Monit Comput 18:137–144

    Article  PubMed  Google Scholar 

  • Prior BM, Yang HT, Terjung RL (2004) What makes vessels grow with exercise training? J Appl Physiol 97:1119–1128

    Article  PubMed  Google Scholar 

  • Salvi P, Magnani E, Valbusa F, Agnoletti D, Alecu C, Joly L, Benetos A (2008) Comparative study of methodologies for pulse wave velocity estimation. J Hum Hypertens 22:669–677

    Article  PubMed  CAS  Google Scholar 

  • Seals DR, Moreau KL, Gates PE, Eskurza I (2006) Modulatory influences on ageing of the vasculature in healthy humans. Exp Gerontol 41:501–507

    Article  PubMed  Google Scholar 

  • Sessa WC, Pritchard K, Seyedi N, Want J, Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74:349–353

    PubMed  CAS  Google Scholar 

  • Spinelli L, Petretta M, Marciano F, Testa G, Rao MA, Volpe M, Bonaduce D (1999) Cardiac autonomic responses to volume overload in normal subjects and in patients with dilated cardiomyopathy. Am J Physiol 277:1361–1368

    Google Scholar 

  • Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR (2000) Aging, habitual exercise, and dynamic arterial compliance. Circulation 102:1270–1275

    PubMed  CAS  Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Google Scholar 

  • van Beaumont W, Stand JC, Petrofsky JS, Hipskind SG, Greenleaf JE (1973) Changes in total plasma content of electrolytes and proteins with maximal exercise. J Appl Physiol 34:102–106

    PubMed  Google Scholar 

  • Wang J, Wolin MS, Hintze TH (1993) Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 73:829–838

    PubMed  CAS  Google Scholar 

  • Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockroft JR, Webb DJ (1998) Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens 16:2079–2084

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ (2000) The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 525:263–270

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson IB, MacCallum H, Cockcroft JR, Webb DJ (2002) Inhibition of basal nitric oxide synthesis increases aortic augmentation index and pulse wave velocity in vivo. Br J Clin Pharmacol 53:189–192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack M. Goodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currie, K.D., Thomas, S.G. & Goodman, J.M. Effects of short-term endurance exercise training on vascular function in young males. Eur J Appl Physiol 107, 211–218 (2009). https://doi.org/10.1007/s00421-009-1116-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1116-4

Keywords

Navigation