Skip to main content
Log in

Relationships between surface EMG variables and motor unit firing rates

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Although surface electromyography (sEMG) is a widely used electrophysiological technique, its physiological interpretation remains somewhat controversial. This study examined the relationship between motor unit firing rates (MUFR) and the root mean square (RMS) amplitude and mean power frequency (MPF) of the sEMG signal in the biceps brachii. Eleven subjects performed maximal isometric elbow flexion while indwelling and sEMG recordings were obtained from the biceps. The RMS amplitude and MPF of the surface signal, and the mean MUFR from the indwelling signal, were calculated over 500 ms epochs. Group means showed a strong MUFR–RMS amplitude relationship (r 2 = 0.91), but a weak MUFR–MPF relationship (r 2 = 0.20). Using all trials, the MUFR–RMS amplitude (r 2 = 0.19) and MUFR–MPF (r 2 = 0.0037) relationships were much weaker. Within individual subjects, the MUFR–RMS amplitude (mean r 2 = 0.13 ± 0.17) and the MUFR–MPF (mean r 2 = 0.040 ± 0.041) relationships were also weak. These results suggest that MUFR cannot be predicted from the characteristics of the sEMG signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference List

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjaer-Kristensen J, Dyhre-Poulsen P (2000) Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol 89:2249–2257

    PubMed  CAS  Google Scholar 

  • Basmajian J, De Luca CJ (1985) Muscles alive: their functions revealed by electromyography. Williams & Wilkins, Baltimore

    Google Scholar 

  • Bellemare F, Woods JJ, Johansson R, Bigland-Ritchie B (1983) Motor-unit discharge rates in maximal voluntary contractions of three human muscles. J Neurophysiol 50:1380–1392

    PubMed  CAS  Google Scholar 

  • Boe SG, Stashuk DW, Doherty TJ (2007) Motor unit number estimates and quantitative motor unit analysis in healthy subjects and patients with amyotrophic lateral sclerosis. Muscle Nerve 36:62–70. doi:10.1002/mus.20784

    Article  PubMed  Google Scholar 

  • Broman H, Bilotto G, De Luca CJ (1985) Myoelectric signal conduction velocity and spectral parameters: influence of force and time. J Appl Physiol 58:1428–1437

    PubMed  CAS  Google Scholar 

  • Dupont L, Gamet D, Perot C (2000) Motor unit recruitment and EMG power spectra during ramp contractions of a bifunctional muscle. J Electromyogr Kinesiol 10:217–224. doi:10.1016/S1050-6411(00)00014-6

    Article  PubMed  CAS  Google Scholar 

  • Farina D, Rainoldi A (1999) Compensation of the effect of subcutaneous tissue layers on surface EMG: a simulation study. Med Eng Phys 21:533–540. doi:10.1016/S1350-4533(99)00076-4

    Article  PubMed  CAS  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495. doi:10.1152/japplphysiol.01070.2003

    Article  PubMed  Google Scholar 

  • Felici F, Rosponi A, Sbriccoli P, Filligoi GC, Fattorini L, Marchetti M (2001) Linear and non-linear analysis of surface electromyograms in weightlifters. Eur J Appl Physiol 84:337–342. doi:10.1007/s004210000364

    Article  PubMed  CAS  Google Scholar 

  • Fling BW, Christie A, Kamen G (2008) Motor unit synchronization in FDI and biceps brachii muscles of strength-trained males. J Electromyogr Kinesiol (in press)

  • Fuglevand AJ, Winter DA, Patla AE, Stashuk D (1992) Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol Cybern 67:143–153. doi:10.1007/BF00201021

    Article  PubMed  CAS  Google Scholar 

  • Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70:2470–2488

    PubMed  CAS  Google Scholar 

  • Fuglsang-Frederiksen A, Ronager J (1988) The motor unit firing rate and the power spectrum of EMG in humans. Electroencephalogr Clin Neurophysiol 70:68–72. doi:10.1016/0013-4694(88)90196-4

    Article  PubMed  CAS  Google Scholar 

  • Gabriel DA, Boucher JP (1998) Effects of repeated maximal isotonic contractions upon electromechanical delay. Eur J Appl Physiol 79:37–40

    Article  CAS  Google Scholar 

  • Gabriel DA, Kamen G (2009) Experimental and modeling investigation of spectral compression of biceps brachii SEMG activity with increasing force levels. J Electromyogr Kinesiol 19:437–448

    Google Scholar 

  • Gydikov A, Kosarov D (1974) Some features of different motor units in human biceps brachii. Pflugers Arch 347:75–88. doi:10.1007/BF00587056

    Article  PubMed  CAS  Google Scholar 

  • Haig AJ, Gelblum JB, Rechtien JJ, Gitter AJ (1999) The use of surface EMG in the diagnosis and treatment of nerve and muscle disorders. Muscle Nerve 22:S239–S242. doi:10.1002/(SICI)1097-4598(199904)22:4<541::AID-MUS22>3.0.CO;2-8

    Article  Google Scholar 

  • Kamen G, Du DC (1999) Independence of motor unit recruitment and rate modulation during precision force control. Neuroscience 88:643–653. doi:10.1016/S0306-4522(98)00248-6

    Article  PubMed  CAS  Google Scholar 

  • Kamen G, Sison SV, Du CC, Patten C (1995) Motor unit discharge behavior in older adults during maximal-effort contractions. J Appl Physiol 79:1908–1913

    PubMed  CAS  Google Scholar 

  • Keenan KG, Farina D, Merletti R, Enoka RM (2006) Amplitude cancellation reduces the size of motor unit potentials averaged from the surface EMG. J Appl Physiol 100:1928–1937. doi:10.1152/japplphysiol.01282.2005

    Article  PubMed  Google Scholar 

  • Knight CA, Kamen G (2004) Enhanced motor unit rate coding with improvements in a force-matching task. J Electromyogr Kinesiol 14:619–629. doi:10.1016/j.jelekin.2004.04.005

    Article  PubMed  Google Scholar 

  • Knight CA, Kamen G (2005) Superficial motor units are larger than deeper motor units in human vastus lateralis muscle. Muscle Nerve 31:475–480. doi:10.1002/mus.20265

    Article  PubMed  CAS  Google Scholar 

  • Krogh-Lund C (1993) Myo-electric fatigue and force failure from submaximal static elbow flexion sustained to exhaustion. Eur J Appl Physiol Occup Physiol 67:389–401. doi:10.1007/BF00376454

    Article  PubMed  CAS  Google Scholar 

  • Kukulka CG, Clamann HP (1981) Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res 219:45–55. doi:10.1016/0006-8993(81)90266-3

    Article  PubMed  CAS  Google Scholar 

  • Lacourse MG, Kamen G, Sison SV, Du CC (1993) Reliability of identifying single motor units from a multi-unit spike train. Med Sci Sports Exerc 25(Suppl):S1109. doi:10.1249/00005768-199305001-01113

    Google Scholar 

  • Lindeman E, Spaans F, Reulen JP, Leffers P, Drukker J (1999) Surface EMG of proximal leg muscles in neuromuscular patients and in healthy controls: relations to force and fatigue. J Electromyogr Kinesiol 9:299–307. doi:10.1016/S1050-6411(99)00002-4

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom L, Kadefors R, Petersen I (1977) An electromyographic index for localized muscle fatigue. J Appl Physiol 43:750–754

    PubMed  CAS  Google Scholar 

  • Macaluso A, De Vito G, Felici F, Nimmo MA (2000) Electromyogram changes during sustained contraction after resistance training in women in their 3rd and 8th decades. Eur J Appl Physiol 82:418–424. doi:10.1007/s004210000212

    Article  PubMed  CAS  Google Scholar 

  • Moritani T, Muro M (1987) Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. Eur J Appl Physiol Occup Physiol 56:260–265. doi:10.1007/BF00690890

    Article  PubMed  CAS  Google Scholar 

  • Moritani T, Muro M, Nagata A (1986) Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol 60:1179–1185

    PubMed  CAS  Google Scholar 

  • Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M (1992) Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol 64:552–556. doi:10.1007/BF00843767

    Article  PubMed  CAS  Google Scholar 

  • Person RS, Libkind MS (1970) Simulation of electromyograms showing interference patterns. Electroencephalogr Clin Neurophysiol 28:625–632. doi:10.1016/0013-4694(70)90205-1

    Article  PubMed  CAS  Google Scholar 

  • Podnar S (2004) Usefulness of an increase in size of motor unit potential sample. Clin Neurophysiol 115:1683–1688. doi:10.1016/j.clinph.2004.02.016

    Article  PubMed  Google Scholar 

  • Pullman SL, Goodin DS, Marquinez AI, Tabbal S, Rubin M (2000) Clinical utility of surface EMG: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology 55:171–177

    PubMed  CAS  Google Scholar 

  • Sbriccoli P, Bazzucchi I, Rosponi A, Bernardi M, De Vito G, Felici F (2003) Amplitude and spectral characteristics of biceps Brachii sEMG depend upon speed of isometric force generation. J Electromyogr Kinesiol 13:139–147. doi:10.1016/S1050-6411(02)00098-6

    Article  PubMed  CAS  Google Scholar 

  • Solomonow M, Baten C, Smit J, Baratta R, Hermens H, D’Ambrosia R, Shoji H (1990) Electromyogram power spectra frequencies associated with motor unit recruitment strategies. J Appl Physiol 68:1177–1185

    PubMed  CAS  Google Scholar 

  • Westgaard RH, De Luca CJ (2001) Motor control of low-threshold motor units in the human trapezius muscle. J Neurophysiol 85:1777–1781

    PubMed  CAS  Google Scholar 

  • Weytjens JL, van Steenberghe D (1984) Spectral analysis of the surface electromyogram as a tool for studying rate modulation: a comparison between theory, simulation, and experiment. Biol Cybern 50:95–103. doi:10.1007/BF00337156

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Masuda T, Okada M (2002) Age-related EMG variables during maximum voluntary contraction. Percept Mot Skills 95:10–14

    PubMed  Google Scholar 

  • Yao W, Fuglevand RJ, Enoka RM (2000) Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. J Neurophysiol 83:441–452

    PubMed  CAS  Google Scholar 

  • Zhou P, Rymer WZ (2004) Factors governing the form of the relation between muscle force and the EMG: a simulation study. J Neurophysiol 92:2878–2886. doi:10.1152/jn.00367.2004

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada, awarded to D.A. Gabriel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Gabriel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christie, A., Greig Inglis, J., Kamen, G. et al. Relationships between surface EMG variables and motor unit firing rates. Eur J Appl Physiol 107, 177–185 (2009). https://doi.org/10.1007/s00421-009-1113-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1113-7

Keywords

Navigation