Skip to main content
Log in

Electromyographic analysis of hip adductor muscles during incremental fatiguing pedaling exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate activity of hip adductor muscles over time and during a representative crank cycle in fatiguing pedaling. Sixteen healthy men performed incremental pedaling exercise until exhaustion. During the exercise, surface electromyogram (EMG) was detected from adductor magnus (AM), adductor longus (AL), and selected thigh muscles. Temporal changes to normalized EMG in AM muscle resembled those in vastus lateralis (VL) muscle, whereas those in AL muscle showed later onset of increase from baseline compared with AM and VL muscles. During a representative crank cycle, the same level of normalized EMG was found between propulsive and pulling phases for AM muscle, whereas muscle activation of AL muscle during the pulling phase was statistically significant higher than that during the propulsive phase. We concluded that AM and AL muscles were gradually recruited over time during fatiguing pedaling exercise, but their temporal change and activation phases were not completely the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akima H, Kinugasa R, Kuno S (2005) Recruitment of the thigh muscles during sprint cycling by muscle functional magnetic resonance imaging. Int J Sports Med 26:245–252. doi:10.1055/s-2004-821000

    Article  PubMed  CAS  Google Scholar 

  • Akima H, Ushiyama J, Kubo J, Fukuoka H, Kanehisa H, Fukunaga T (2007) Effect of unloading on muscle volume with and without resistance training. Acta Astronaut 60:728–736. doi:10.1016/j.actaastro.2006.10.006

    Article  Google Scholar 

  • Baum BS, Li L (2003) Lower extremity muscle activities during cycling are influenced by load and frequency. J Electromyogr Kinesiol 13:181–190. doi:10.1016/S1050-6411(02)00110-4

    Article  PubMed  Google Scholar 

  • Chapman AR, Vicenzino B, Blanch P, Hodges PW (2008) Patterns of leg muscle recruitment vary between novice and highly trained cyclists. J Electromyogr Kinesiol 18:359–371. doi:10.1016/j.jelekin.2005.12.007

    Article  PubMed  Google Scholar 

  • Dostal WF, Soderberg GL, Andrews JG (1986) Actions of hip muscles. Phys Ther 66:351–361

    PubMed  CAS  Google Scholar 

  • Endo MY, Kobayakawa M, Kinugasa R, Kuno S, Akima H, Rossiter HB, Miura A, Fukuba Y (2007) Thigh muscle activation distribution and pulmonary VO2 kinetics during moderate, heavy, and very heavy intensity cycling exercise in humans. Am J Physiol Regul Integr Comp Physiol 293:R812–R820. doi:10.1152/ajpregu.00028.2007

    PubMed  CAS  Google Scholar 

  • Ericson MO, Nisell R, Arborelius UP, Ekholm J (1985) Muscular activity during ergometer cycling. Scand J Rehabil Med 17:53–61

    PubMed  CAS  Google Scholar 

  • Ericson MO, Bratt A, Nisell R, Arborelius UP, Ekholm J (1986) Power output and work in different muscle groups during ergometer cycling. Eur J Appl Physiol Occup Physiol 55:229–235. doi:10.1007/BF02343792

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein JL, Haller RG, Lewis SF, Archer BT, Barker BR, Payne J, Parkey RW, Peshock RM (1991) Absence of exercise-induced MRI enhancement of skeletal muscle in McArdle’s disease. J Appl Physiol 71:961–969

    PubMed  CAS  Google Scholar 

  • Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H (2001) Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand 172:249–255. doi:10.1046/j.1365-201x.2001.00867.x

    Article  PubMed  CAS  Google Scholar 

  • Glass SC, Knowlton RG, Sanjabi PB, Sullivan JJ (1998) Identifying the integrated electromyographic threshold using different muscles during incremental cycling exercise. J Sports Med Phys Fitness 38:47–52

    PubMed  CAS  Google Scholar 

  • Green DL, Morris JM (1970) Role of adductor longus and adductor magnus in postural movements and in ambulation. Am J Phys Med 49:223–240

    PubMed  CAS  Google Scholar 

  • Green HJ, Hughson RL, Orr GW, Ranney DA (1983) Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise. J Appl Physiol 54:1032–1038

    PubMed  CAS  Google Scholar 

  • Green HJ, Jones LL, Houston ME, Ball-Burnett ME, Farrance BW (1989) Muscle energetics during prolonged cycling after exercise hypervolemia. J Appl Physiol 66:622–631

    PubMed  CAS  Google Scholar 

  • Gregor RJ, Cavanagh PR, LaFortune M (1985) Knee flexor moments during propulsion in cycling—a creative solution to Lombard’s Paradox. J Biomech 18:307–316. doi:10.1016/0021-9290(85)90286-6

    Article  PubMed  CAS  Google Scholar 

  • Hakansson NA, Hull ML (2005) Functional roles of the leg muscles when pedaling in the recumbent versus the upright position. J Biomech Eng 127:301–310. doi:10.1115/1.1865192

    Article  PubMed  Google Scholar 

  • Helal JN, Guezennec CY, Goubel F (1987) The aerobic-anaerobic transition: re-examination of the threshold concept including an electromyographic approach. Eur J Appl Physiol Occup Physiol 56:643–649. doi:10.1007/BF00424804

    Article  PubMed  CAS  Google Scholar 

  • Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ (2000) Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab 278:E316–E329

    PubMed  CAS  Google Scholar 

  • Housh TJ, deVries HA, Johnson GO, Housh DJ, Evans SA, Stout JR, Evetovich TK, Bradway RM (1995) Electromyographic fatigue thresholds of the superficial muscles of the quadriceps femoris. Eur J Appl Physiol Occup Physiol 71:131–136. doi:10.1007/BF00854969

    Article  PubMed  CAS  Google Scholar 

  • Hug F, Faucher M, Kipson N, Jammes Y (2003) EMG signs of neuromuscular fatigue related to the ventilatory threshold during cycling exercise. Clin Physiol Funct Imaging 23:208–214. doi:10.1046/j.1475-097X.2003.00497.x

    Article  PubMed  Google Scholar 

  • Hug F, Bendahan D, Le Fur Y, Cozzone PJ, Grelot L (2004a) Heterogeneity of muscle recruitment pattern during pedaling in professional road cyclists: a magnetic resonance imaging and electromyography study. Eur J Appl Physiol 92:334–342. doi:10.1007/s00421-004-1096-3

    Article  PubMed  Google Scholar 

  • Hug F, Decherchi P, Marqueste T, Jammes Y (2004b) EMG versus oxygen uptake during cycling exercise in trained and untrained subjects. J Electromyogr Kinesiol 14:187–195. doi:10.1016/S1050-6411(03)00081-6

    Article  PubMed  Google Scholar 

  • Hug F, Marqueste T, Le Fur Y, Cozzone PJ, Grelot L, Bendahan D (2006) Selective training-induced thigh muscles hypertrophy in professional road cyclists. Eur J Appl Physiol 97:591–597. doi:10.1007/s00421-006-0218-5

    Article  PubMed  Google Scholar 

  • Hug F, Drouet JM, Champoux Y, Couturier A, Dorel S (2008) Interindividual variability of electromyographic patterns and pedal force profiles in trained cyclists. Eur J Appl Physiol 104:667–678. doi:10.1007/s00421-008-0810-y

    Article  PubMed  Google Scholar 

  • Laplaud D, Hug F, Grelot L (2006) Reproducibility of eight lower limb muscles activity level in the course of an incremental pedaling exercise. J Electromyogr Kinesiol 16:158–166. doi:10.1016/j.jelekin.2005.04.002

    Article  PubMed  Google Scholar 

  • Li L (2004) Neuromuscular control and coordination during cycling. Res Q Exerc Sport 75:16–22

    PubMed  Google Scholar 

  • Li L, Caldwell GE (1998) Muscle coordination in cycling: effect of surface incline and posture. J Appl Physiol 85:927–934

    PubMed  CAS  Google Scholar 

  • Lucia A, Sanchez O, Carvajal A, Chicharro JL (1999) Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. Br J Sports Med 33:178–185. doi:10.1136/bjsm.33.3.178

    Article  PubMed  CAS  Google Scholar 

  • MacIntosh BR, Neptune RR, Horton JF (2000) Cadence, power, and muscle activation in cycle ergometry. Med Sci Sports Exerc 32:1281–1287. doi:10.1097/00005768-200007000-00015

    Article  PubMed  CAS  Google Scholar 

  • Meyer RA, Prior BM (2000) Functional magnetic resonance imaging of muscle. Exerc Sport Sci Rev 28:89–92

    PubMed  CAS  Google Scholar 

  • Mileva K, Turner D (2003) Neuromuscular and biomechanical coupling in human cycling: adaptations to changes in crank length. Exp Brain Res 152:393–403. doi:10.1007/s00221-003-1561-y

    Article  PubMed  Google Scholar 

  • Moritani T, Takaishi T, Matsumoto T (1993) Determination of maximal power output at neuromuscular fatigue threshold. J Appl Physiol 74:1729–1734

    PubMed  CAS  Google Scholar 

  • Neptune RR, Hull ML (1998) Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model. J Biomech Eng 120:334–341. doi:10.1115/1.2797999

    Article  PubMed  CAS  Google Scholar 

  • Neptune RR, Kautz SA, Hull ML (1997) The effect of pedaling rate on coordination in cycling. J Biomech 30:1051–1058. doi:10.1016/S0021-9290(97)00071-7

    Article  PubMed  CAS  Google Scholar 

  • Pressel T, Lengsfeld M (1998) Functions of hip joint muscles. Med Eng Phys 20:50–56. doi:10.1016/S1350-4533(97)00040-4

    Article  PubMed  CAS  Google Scholar 

  • Raasch CC, Zajac FE, Ma B, Levine WS (1997) Muscle coordination of maximum-speed pedaling. J Biomech 30:595–602. doi:10.1016/S0021-9290(96)00188-1

    Article  PubMed  CAS  Google Scholar 

  • Richardson RS, Frank LR, Haseler LJ (1998) Dynamic knee-extensor and cycle exercise: functional MRI of muscular activity. Int J Sports Med 19:182–187. doi:10.1055/s-2007-971901

    Article  PubMed  CAS  Google Scholar 

  • Ryan MM, Gregor RJ (1992) EMG profiles of lower extremity muscles during cycling at constant workload and cadence. J Electromyogr Kinesiol 2:69–80. doi:10.1016/1050-6411(92)90018-E

    Article  Google Scholar 

  • Ting LH, Kautz SA, Brown DA, Zajac FE (1999) Phase reversal of biomechanical functions and muscle activity in backward pedaling. J Neurophysiol 81:544–551

    PubMed  CAS  Google Scholar 

  • van Ingen Schenau GJ, Boots PJ, de Groot G, Snackers RJ, van Woensel WW (1992) The constrained control of force and position in multi-joint movements. Neuroscience 46:197–207. doi:10.1016/0306-4522(92)90019-X

    Article  PubMed  Google Scholar 

  • Viitasalo JT, Luhtanen P, Rahkila P, Rusko H (1985) Electromyographic activity related to aerobic and anaerobic threshold in ergometer bicycling. Acta Physiol Scand 124:287–293. doi:10.1111/j.1748-1716.1985.tb07663.x

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Akima H (2008) Cross-talk from adjacent muscle has a negligible effect on surface electromyographic activity of vastus intermedius muscle during isometric contraction. J Electromyogr Kinesiol. doi:10.1016/j.jekin.2008.06.002

Download references

Acknowledgments

This research was supported in part by a Grant-in-Aid for Scientific Research (#17300207) from the Japanese Ministry of Education, Science, Sports and Culture. The authors thank Dr. Masaaki Hirayama of Department of Neurology, Nagoya University Graduate School of Medicine and Dr. Teruhiko Koike of Research Center of Health, Physical Fitness & Sports, Nagoya University for their technical support and helpful suggestion of needle EMG recording.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kohei Watanabe or Hiroshi Akima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Katayama, K., Ishida, K. et al. Electromyographic analysis of hip adductor muscles during incremental fatiguing pedaling exercise. Eur J Appl Physiol 106, 815–825 (2009). https://doi.org/10.1007/s00421-009-1086-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1086-6

Keywords

Navigation