Skip to main content
Log in

Normalized EMG to normalized torque relationship of vastus intermedius muscle during isometric knee extension

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of the present study was to investigate the electromyography (EMG) to torque relationship of the vastus intermedius (VI) muscle. Thirteen healthy men performed maximal voluntary contraction (MVC) and submaximal contraction during isometric knee extension at 10% of the MVC to 90% of the MVC at intervals of 10% of the MVC level. Surface EMG was detected from four muscle components of the QF muscle group, i.e., VI, vastus lateralis (VL), vastus medialis, and rectus femoris (RF) muscles. Normalized muscle activation in the VI muscle was significantly lower than in the VL muscle at a lower torque level (20 and 40% of MVC) and significantly lower compared to the RF muscle at a higher torque level (from 60 to 90% of MVC). These results suggest that neuromuscular activation in the VI muscle is not consistent with the other components of QF muscle group during submaximal knee extension contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akima H, Takahashi H, Kuno S, Katsuta S (2004) Coactivation pattern in human quadriceps during isokinetic knee-extension by muscle functional MRI. Eur J Appl Physiol 91:7–14. doi:10.1007/s00421-003-0942-z

    Article  PubMed  Google Scholar 

  • Akima H, Ushiyama J, Kubo J, Fukuoka H, Kanehisa H, Fukunaga T (2007) Effect of unloading on muscle volume with and without resistance training. Acta Astronaut 60:728–736. doi:10.1016/j.actaastro.2006.10.006

    Article  Google Scholar 

  • Alkner BA, Tesch PA, Berg HE (2000) Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sports Exerc 32:459–463. doi:10.1097/00005768-200002000-00030

    Article  PubMed  CAS  Google Scholar 

  • Basmajian JV, DeLuca CJ (1985) Muscle Alive. Williams & Wilkins, Baltimore

    Google Scholar 

  • Basmajian JV, Harden TP, Regenos EM (1971) Integrated actions of four heads of quadriceps femoris: an electromyographic study. Anat Rec 172:15–20. doi:10.1002/ar.1091720102

    Article  Google Scholar 

  • Beck TW, Housh TJ, Cramer JT, Weir JP (2008) The effect of electrode placement and innervation zone location on the electromyographic amplitude and mean power frequency versus isometric torque relationship for vastus lateralis muscle. J Electromyogr Kinesiol 18:317–328. doi:10.1016/j.jelekin.2006.10.006

    Article  PubMed  Google Scholar 

  • Blazevich AJ, Gill ND, Zhou S (2006) Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat 209:289–310. doi:10.1111/j.1469-7580.2006.00619.x

    Article  PubMed  Google Scholar 

  • Bleck EE (1979) Orthopaedic management of cerebral palsy. In: Sledge CB (ed) Saunders monographs in clinical orthopaedics. W.B. Saunders company, Philadelphia

    Google Scholar 

  • Bodine SC, Roy RR, Eldred E, Edgerton VR (1987) Maximal force as a function of anatomical features of motor units in the cat tibialis anterior. J Neurophysiol 57:1730–1745

    PubMed  CAS  Google Scholar 

  • Clark BC, Collier SR, Manini TM, Ploutz-Snyder LL (2005) Sex differences in muscle fatigability and activation patterns of the human quadriceps femoris. Eur J Appl Physiol Occup Physiol 94:196–206. doi:10.1007/s00421-004-1293-0

    Article  Google Scholar 

  • De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982) Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol 329:113–128

    PubMed  Google Scholar 

  • Ebenbichler G, Kollmitzer J, Quittan M, Uhl F, Kirtley C, Fialka V (1998) EMG patterns accompanying isometric fatiguing knee-extensions are different in mono- and bi-articular muscles. Electroencephalogr Clin Neurophysiol 109:256–262. doi:10.1016/S0924-980X(98)00015-0

    Article  PubMed  CAS  Google Scholar 

  • Edgerton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of human leg muscles. Histochem J 7:259–266. doi:10.1007/BF01003594

    Article  PubMed  CAS  Google Scholar 

  • Eloranta V (1989) Patterning of muscle activity in static knee extension. Electromyogr Clin Neurophysiol 29:369–375

    PubMed  CAS  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2004a) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495. doi:10.1152/japplphysiol.01070.2003

    Article  PubMed  Google Scholar 

  • Farina D, Merletti R, Stegeman DF (2004b) Biophysics of the generation of EMG signal. In: Merletti R, Parker P (eds) Electromyography, physiology, engineering, and noninvasive application. John Wiley Sons, Inc., Hoboken

    Google Scholar 

  • Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70:2470–2488

    PubMed  CAS  Google Scholar 

  • Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H (2001) Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand 172:249–255. doi:10.1046/j.1365-201x.2001.00867.x

    Article  PubMed  CAS  Google Scholar 

  • Hakkinen K, Komi PV (1983) Electromyographic changes during strength training and detraining. Med Sci Sports Exerc 15:455–460. doi:10.1249/00005768-198315060-00003

    PubMed  CAS  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    PubMed  CAS  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles an autopsy study. J Neurol Sci 18:111–129. doi:10.1016/0022-510X(73)90023-3

    Article  PubMed  CAS  Google Scholar 

  • Kouzaki M, Shinohara M, Masani K, Kanehisa H, Fukunaga T (2002) Alternate muscle activity observed between knee extensor synergists during low-level sustained contractions. J Appl Physiol 93:675–684

    PubMed  Google Scholar 

  • Kukulka CG, Clamann HP (1981) Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res 219:45–55. doi:10.1016/0006-8993(81)90266-3

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JH, De Luca CJ (1983) Myoelectric signal versus force relationship in different human muscles. J Appl Physiol 54:1653–1659

    PubMed  CAS  Google Scholar 

  • Le Bozec S, Maton B, Cnockaert JC (1980) The synergy of elbow extensor muscles during dynamic work in man. I. Elbow extension. Eur J Appl Physiol Occup Physiol 44:255–269. doi:10.1007/BF00421625

    Article  PubMed  CAS  Google Scholar 

  • Li L (2004) Neuromuscular control and coordination during cycling. Res Q Exerc Sport 75:16–22

    PubMed  Google Scholar 

  • Lieb FJ, Perry J (1968) Quadriceps function: An anatomical and mechanical study using amputated limbs. J Bone Joint Surg 50A:1535–1548

    Google Scholar 

  • Lieb FJ, Perry J (1971) Quadriceps function: an electromyographic study under isometric contraction. J Bone Joint Surg 53A:749–758

    Google Scholar 

  • Maganaris CN, Baltzopoulos V, Ball D, Sargeant AJ (2001) In vivo specific tension of human skeletal muscle. J Appl Physiol 90:865–872

    PubMed  CAS  Google Scholar 

  • Merletti R, Rainoldi A, Farina D (2001) Surface electromyography for noninvasive characterization of muscle. Exerc Sport Sci Rev 29:20–25. doi:10.1097/00003677-200101000-00005

    Article  PubMed  CAS  Google Scholar 

  • Mesin L, Merletti R, Rainoldi A (2008) Surface EMG: The issue of electrode location. J Electromyogr Kinesiol

  • Montgomery WH 3rd, Pink M, Perry J (1994) Electromyographic analysis of hip and knee musculature during running. Am J Sports Med 22:272–278. doi:10.1177/036354659402200220

    Article  PubMed  Google Scholar 

  • Moritani T, Muro M, Kijima A (1985) Electromechanical changes during electrically induced and maximal voluntary contractions: electrophysiologic responses of different muscle fiber types during stimulated contractions. Exp Neurol 88:471–483. doi:10.1016/0014-4886(85)90064-0

    Article  PubMed  CAS  Google Scholar 

  • Nordander C, Willner J, Hansson GA, Larsson B, Unge J, Granquist L, Skerfving S (2003) Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and BMI, on the EMG amplitude. Eur J Appl Physiol Occup Physiol 89:514–519. doi:10.1007/s00421-003-0819-1

    Article  CAS  Google Scholar 

  • Pincivero DM, Coelho AJ (2000) Activation linearity and parallelism of the superficial quadriceps across the isometric intensity spectrum. Muscle Nerve 23:393–398. doi:10.1002/(SICI)1097-4598(200003)23:3<393::AID-MUS11>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

  • Pincivero DM, Green RC, Mark JD, Campy RM (2000) Gender and muscle differences in EMG amplitude and median frequency, and variability during maximal voluntary contractions of the quadriceps femoris. J Electromyogr Kinesiol 10:189–196. doi:10.1016/S1050-6411(00)00003-1

    Article  PubMed  CAS  Google Scholar 

  • Pincivero DM, Campy RM, Salfetnikov Y, Bright A, Coelho AJ (2001) Influence of contraction intensity, muscle, and gender on median frequency of the quadriceps femoris. J Appl Physiol 90:804–810

    PubMed  CAS  Google Scholar 

  • Pincivero DM, Coelho AJ, Campy RM, Salfetnikov Y, Suter E (2003) Knee extensor torque and quadriceps femoris EMG during perceptually-guided isometric contractions. J Electromyogr Kinesiol 13:159–167. doi:10.1016/S1050-6411(02)00096-2

    Article  PubMed  CAS  Google Scholar 

  • Pincivero DM, Salfetnikov Y, Compy RM, Coelho AJ (2004) Angle- and gender-specific quadriceps femoris muscle recruitment and knee extensor torque. J Biomech 37:1689–1697. doi:10.1016/j.jbiomech.2004.02.005

    Article  PubMed  Google Scholar 

  • Rainoldi A, Melchiorri G, Caruso I (2004) A method for positioning electrodes during surface EMG recordings in lower limb muscles. J Neurosci Methods 134:37–43. doi:10.1016/j.jneumeth.2003.10.014

    Article  PubMed  CAS  Google Scholar 

  • Scott SH, Engstrom CM, Loeb GE (1993) Morphometry of human thigh muscles. Determination of fascicle architecture by magnetic resonance imaging. J Anat 182(Pt 2):249–257

    PubMed  Google Scholar 

  • Shinohara M, Kouzaki M, Yoshihisa T, Fukunaga T (1998) Mechanomyogram from the different heads of the quadriceps muscle during incremental knee extension. Eur J Appl Physiol 78:289–295. doi:10.1007/s004210050422

    Article  CAS  Google Scholar 

  • Solomonow M, Baratta R, Bernardi M, Zhou B, Lu Y, Zhu M, Acierno S (1994) Surface and wire EMG crosstalk in neighbouring muscles. J Electromyogr Kinesiol 4:131–142. doi:10.1016/1050-6411(94)90014-0

    Article  Google Scholar 

  • Thorstensson A, Karlsson J, Viitasalo JH, Luhtanen P, Komi PV (1976) Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand 98:232–236. doi:10.1111/j.1748-1716.1976.tb00241.x

    Article  PubMed  CAS  Google Scholar 

  • Travill AA (1962) Electromyographic study of the extensor apparatus of the forearm. Anat Rec 144:373–376. doi:10.1002/ar.1091440408

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Akima H (2008) Cross-talk from adjacent muscle has a negligible effect on surface electromyographic activity of vastus intermedius muscle during isometric contraction. J Electromyogr Kinesiol. doi:10.1016/j.jekin.2008.06.002

  • Winter DA, Yack HJ (1987) EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol 67:402–411. doi:10.1016/0013-4694(87)90003-4

    Article  PubMed  CAS  Google Scholar 

  • Winter DA, Fuglevand AJ, Archer SE (1994) Cross talk in surface electromyography: theoretical and practical estimates. J Electromyogr Kinesiol 4:15–26. doi:10.1016/1050-6411(94)90023-X

    Article  Google Scholar 

  • Woods JJ, Bigland-Ritchie B (1983) Linear and non-linear surface EMG/force relationships in human muscles. An anatomical/functional argument for the existence of both. Am J Phys Med 62:287–299

    PubMed  CAS  Google Scholar 

  • Zhang L-Q, Wang G, Nuber GW, Press JM (2003) In vivo load sharing among the quadriceps components. J Orthop Res 21:565–571. doi:10.1016/S0736-0266(02)00196-1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kohei Watanabe or Hiroshi Akima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Akima, H. Normalized EMG to normalized torque relationship of vastus intermedius muscle during isometric knee extension. Eur J Appl Physiol 106, 665–673 (2009). https://doi.org/10.1007/s00421-009-1064-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1064-z

Keywords

Navigation