European Journal of Applied Physiology

, Volume 106, Issue 5, pp 665–673

Normalized EMG to normalized torque relationship of vastus intermedius muscle during isometric knee extension

Original Article

Abstract

The purpose of the present study was to investigate the electromyography (EMG) to torque relationship of the vastus intermedius (VI) muscle. Thirteen healthy men performed maximal voluntary contraction (MVC) and submaximal contraction during isometric knee extension at 10% of the MVC to 90% of the MVC at intervals of 10% of the MVC level. Surface EMG was detected from four muscle components of the QF muscle group, i.e., VI, vastus lateralis (VL), vastus medialis, and rectus femoris (RF) muscles. Normalized muscle activation in the VI muscle was significantly lower than in the VL muscle at a lower torque level (20 and 40% of MVC) and significantly lower compared to the RF muscle at a higher torque level (from 60 to 90% of MVC). These results suggest that neuromuscular activation in the VI muscle is not consistent with the other components of QF muscle group during submaximal knee extension contractions.

Keywords

Isometric contraction Quadriceps femoris Surface electromyography Synergistic muscles 

References

  1. Akima H, Takahashi H, Kuno S, Katsuta S (2004) Coactivation pattern in human quadriceps during isokinetic knee-extension by muscle functional MRI. Eur J Appl Physiol 91:7–14. doi:10.1007/s00421-003-0942-z PubMedCrossRefGoogle Scholar
  2. Akima H, Ushiyama J, Kubo J, Fukuoka H, Kanehisa H, Fukunaga T (2007) Effect of unloading on muscle volume with and without resistance training. Acta Astronaut 60:728–736. doi:10.1016/j.actaastro.2006.10.006 CrossRefGoogle Scholar
  3. Alkner BA, Tesch PA, Berg HE (2000) Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sports Exerc 32:459–463. doi:10.1097/00005768-200002000-00030 PubMedCrossRefGoogle Scholar
  4. Basmajian JV, DeLuca CJ (1985) Muscle Alive. Williams & Wilkins, BaltimoreGoogle Scholar
  5. Basmajian JV, Harden TP, Regenos EM (1971) Integrated actions of four heads of quadriceps femoris: an electromyographic study. Anat Rec 172:15–20. doi:10.1002/ar.1091720102 CrossRefGoogle Scholar
  6. Beck TW, Housh TJ, Cramer JT, Weir JP (2008) The effect of electrode placement and innervation zone location on the electromyographic amplitude and mean power frequency versus isometric torque relationship for vastus lateralis muscle. J Electromyogr Kinesiol 18:317–328. doi:10.1016/j.jelekin.2006.10.006 PubMedCrossRefGoogle Scholar
  7. Blazevich AJ, Gill ND, Zhou S (2006) Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat 209:289–310. doi:10.1111/j.1469-7580.2006.00619.x PubMedCrossRefGoogle Scholar
  8. Bleck EE (1979) Orthopaedic management of cerebral palsy. In: Sledge CB (ed) Saunders monographs in clinical orthopaedics. W.B. Saunders company, PhiladelphiaGoogle Scholar
  9. Bodine SC, Roy RR, Eldred E, Edgerton VR (1987) Maximal force as a function of anatomical features of motor units in the cat tibialis anterior. J Neurophysiol 57:1730–1745PubMedGoogle Scholar
  10. Clark BC, Collier SR, Manini TM, Ploutz-Snyder LL (2005) Sex differences in muscle fatigability and activation patterns of the human quadriceps femoris. Eur J Appl Physiol Occup Physiol 94:196–206. doi:10.1007/s00421-004-1293-0 CrossRefGoogle Scholar
  11. De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982) Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol 329:113–128PubMedGoogle Scholar
  12. Ebenbichler G, Kollmitzer J, Quittan M, Uhl F, Kirtley C, Fialka V (1998) EMG patterns accompanying isometric fatiguing knee-extensions are different in mono- and bi-articular muscles. Electroencephalogr Clin Neurophysiol 109:256–262. doi:10.1016/S0924-980X(98)00015-0 PubMedCrossRefGoogle Scholar
  13. Edgerton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of human leg muscles. Histochem J 7:259–266. doi:10.1007/BF01003594 PubMedCrossRefGoogle Scholar
  14. Eloranta V (1989) Patterning of muscle activity in static knee extension. Electromyogr Clin Neurophysiol 29:369–375PubMedGoogle Scholar
  15. Farina D, Merletti R, Enoka RM (2004a) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495. doi:10.1152/japplphysiol.01070.2003 PubMedCrossRefGoogle Scholar
  16. Farina D, Merletti R, Stegeman DF (2004b) Biophysics of the generation of EMG signal. In: Merletti R, Parker P (eds) Electromyography, physiology, engineering, and noninvasive application. John Wiley Sons, Inc., HobokenGoogle Scholar
  17. Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70:2470–2488PubMedGoogle Scholar
  18. Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H (2001) Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand 172:249–255. doi:10.1046/j.1365-201x.2001.00867.x PubMedCrossRefGoogle Scholar
  19. Hakkinen K, Komi PV (1983) Electromyographic changes during strength training and detraining. Med Sci Sports Exerc 15:455–460. doi:10.1249/00005768-198315060-00003 PubMedGoogle Scholar
  20. Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580PubMedGoogle Scholar
  21. Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles an autopsy study. J Neurol Sci 18:111–129. doi:10.1016/0022-510X(73)90023-3 PubMedCrossRefGoogle Scholar
  22. Kouzaki M, Shinohara M, Masani K, Kanehisa H, Fukunaga T (2002) Alternate muscle activity observed between knee extensor synergists during low-level sustained contractions. J Appl Physiol 93:675–684PubMedGoogle Scholar
  23. Kukulka CG, Clamann HP (1981) Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res 219:45–55. doi:10.1016/0006-8993(81)90266-3 PubMedCrossRefGoogle Scholar
  24. Lawrence JH, De Luca CJ (1983) Myoelectric signal versus force relationship in different human muscles. J Appl Physiol 54:1653–1659PubMedGoogle Scholar
  25. Le Bozec S, Maton B, Cnockaert JC (1980) The synergy of elbow extensor muscles during dynamic work in man. I. Elbow extension. Eur J Appl Physiol Occup Physiol 44:255–269. doi:10.1007/BF00421625 PubMedCrossRefGoogle Scholar
  26. Li L (2004) Neuromuscular control and coordination during cycling. Res Q Exerc Sport 75:16–22PubMedGoogle Scholar
  27. Lieb FJ, Perry J (1968) Quadriceps function: An anatomical and mechanical study using amputated limbs. J Bone Joint Surg 50A:1535–1548Google Scholar
  28. Lieb FJ, Perry J (1971) Quadriceps function: an electromyographic study under isometric contraction. J Bone Joint Surg 53A:749–758Google Scholar
  29. Maganaris CN, Baltzopoulos V, Ball D, Sargeant AJ (2001) In vivo specific tension of human skeletal muscle. J Appl Physiol 90:865–872PubMedGoogle Scholar
  30. Merletti R, Rainoldi A, Farina D (2001) Surface electromyography for noninvasive characterization of muscle. Exerc Sport Sci Rev 29:20–25. doi:10.1097/00003677-200101000-00005 PubMedCrossRefGoogle Scholar
  31. Mesin L, Merletti R, Rainoldi A (2008) Surface EMG: The issue of electrode location. J Electromyogr KinesiolGoogle Scholar
  32. Montgomery WH 3rd, Pink M, Perry J (1994) Electromyographic analysis of hip and knee musculature during running. Am J Sports Med 22:272–278. doi:10.1177/036354659402200220 PubMedCrossRefGoogle Scholar
  33. Moritani T, Muro M, Kijima A (1985) Electromechanical changes during electrically induced and maximal voluntary contractions: electrophysiologic responses of different muscle fiber types during stimulated contractions. Exp Neurol 88:471–483. doi:10.1016/0014-4886(85)90064-0 PubMedCrossRefGoogle Scholar
  34. Nordander C, Willner J, Hansson GA, Larsson B, Unge J, Granquist L, Skerfving S (2003) Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and BMI, on the EMG amplitude. Eur J Appl Physiol Occup Physiol 89:514–519. doi:10.1007/s00421-003-0819-1 CrossRefGoogle Scholar
  35. Pincivero DM, Coelho AJ (2000) Activation linearity and parallelism of the superficial quadriceps across the isometric intensity spectrum. Muscle Nerve 23:393–398. doi:10.1002/(SICI)1097-4598(200003)23:3<393::AID-MUS11>3.0.CO;2-P PubMedCrossRefGoogle Scholar
  36. Pincivero DM, Green RC, Mark JD, Campy RM (2000) Gender and muscle differences in EMG amplitude and median frequency, and variability during maximal voluntary contractions of the quadriceps femoris. J Electromyogr Kinesiol 10:189–196. doi:10.1016/S1050-6411(00)00003-1 PubMedCrossRefGoogle Scholar
  37. Pincivero DM, Campy RM, Salfetnikov Y, Bright A, Coelho AJ (2001) Influence of contraction intensity, muscle, and gender on median frequency of the quadriceps femoris. J Appl Physiol 90:804–810PubMedGoogle Scholar
  38. Pincivero DM, Coelho AJ, Campy RM, Salfetnikov Y, Suter E (2003) Knee extensor torque and quadriceps femoris EMG during perceptually-guided isometric contractions. J Electromyogr Kinesiol 13:159–167. doi:10.1016/S1050-6411(02)00096-2 PubMedCrossRefGoogle Scholar
  39. Pincivero DM, Salfetnikov Y, Compy RM, Coelho AJ (2004) Angle- and gender-specific quadriceps femoris muscle recruitment and knee extensor torque. J Biomech 37:1689–1697. doi:10.1016/j.jbiomech.2004.02.005 PubMedCrossRefGoogle Scholar
  40. Rainoldi A, Melchiorri G, Caruso I (2004) A method for positioning electrodes during surface EMG recordings in lower limb muscles. J Neurosci Methods 134:37–43. doi:10.1016/j.jneumeth.2003.10.014 PubMedCrossRefGoogle Scholar
  41. Scott SH, Engstrom CM, Loeb GE (1993) Morphometry of human thigh muscles. Determination of fascicle architecture by magnetic resonance imaging. J Anat 182(Pt 2):249–257PubMedGoogle Scholar
  42. Shinohara M, Kouzaki M, Yoshihisa T, Fukunaga T (1998) Mechanomyogram from the different heads of the quadriceps muscle during incremental knee extension. Eur J Appl Physiol 78:289–295. doi:10.1007/s004210050422 CrossRefGoogle Scholar
  43. Solomonow M, Baratta R, Bernardi M, Zhou B, Lu Y, Zhu M, Acierno S (1994) Surface and wire EMG crosstalk in neighbouring muscles. J Electromyogr Kinesiol 4:131–142. doi:10.1016/1050-6411(94)90014-0 CrossRefGoogle Scholar
  44. Thorstensson A, Karlsson J, Viitasalo JH, Luhtanen P, Komi PV (1976) Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand 98:232–236. doi:10.1111/j.1748-1716.1976.tb00241.x PubMedCrossRefGoogle Scholar
  45. Travill AA (1962) Electromyographic study of the extensor apparatus of the forearm. Anat Rec 144:373–376. doi:10.1002/ar.1091440408 PubMedCrossRefGoogle Scholar
  46. Watanabe K, Akima H (2008) Cross-talk from adjacent muscle has a negligible effect on surface electromyographic activity of vastus intermedius muscle during isometric contraction. J Electromyogr Kinesiol. doi:10.1016/j.jekin.2008.06.002
  47. Winter DA, Yack HJ (1987) EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol 67:402–411. doi:10.1016/0013-4694(87)90003-4 PubMedCrossRefGoogle Scholar
  48. Winter DA, Fuglevand AJ, Archer SE (1994) Cross talk in surface electromyography: theoretical and practical estimates. J Electromyogr Kinesiol 4:15–26. doi:10.1016/1050-6411(94)90023-X CrossRefGoogle Scholar
  49. Woods JJ, Bigland-Ritchie B (1983) Linear and non-linear surface EMG/force relationships in human muscles. An anatomical/functional argument for the existence of both. Am J Phys Med 62:287–299PubMedGoogle Scholar
  50. Zhang L-Q, Wang G, Nuber GW, Press JM (2003) In vivo load sharing among the quadriceps components. J Orthop Res 21:565–571. doi:10.1016/S0736-0266(02)00196-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Graduate School of Education and Human DevelopmentNagoya UniversityNagoyaJapan
  2. 2.Research Center of Health, Physical Fitness and SportsNagoya UniversityNagoyaJapan

Personalised recommendations