Skip to main content
Log in

Evoked tetanic torque and activation level explain strength differences by side

  • Short Communication
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that healthy young people typically have side-to-side differences in knee strength of about 10% when the peak torque generated by the stronger leg is contrasted with that of the weaker leg. However, the mechanisms responsible for side-to-side differences in knee strength have not been clearly defined. The current study tested the hypothesis that side-to-side knee extensor strength differences are explained by inter-limb variations in voluntary activation, antagonistic hamstrings activity, and electrically evoked torque at rest. Twenty-two volunteers served as subjects. Side-to-side differences in quadriceps activation and electrically evoked knee extensor torque explained 69% of the strength differences by side. Antagonistic hamstrings activity did not contribute significantly. The results suggest both central and peripheral mechanisms contribute to inter-limb variations in strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Bampouras TM, Reeves ND, Baltzopoulos V, Maganaris CN (2006) Muscle activation assessment: effects of method, stimulus number, and joint angle. Muscle Nerve 34:740–746. doi:10.1002/mus.20610

    Article  PubMed  Google Scholar 

  • Behm D, Power K, Drinkwater E (2001) Comparison of interpolation and central activation ratios as measures of muscle inactivation. Muscle Nerve 24:925–934. doi:10.1002/mus.1090

    Article  PubMed  CAS  Google Scholar 

  • Berg HE, Dudley GA, Haggmark T, Ohlsen H, Tesch PA (1991) Effects of lower limb unloading on skeletal muscle mass and function in humans. J Appl Physiol 70:1882–1885. doi:10.1063/1.349490

    Article  PubMed  CAS  Google Scholar 

  • Brass TJ, Loushin MK, Day JW, Iaizzo PA (1996) An improved method for muscle force assessment in neuromuscular disease. J Med Eng Technol 20:67–74. doi:10.3109/03091909609008382

    Article  PubMed  CAS  Google Scholar 

  • Carolan B, Cafarelli E (1992) Adaptations in coactivation after isometric resistance training. J Appl Physiol 73:911–917

    PubMed  CAS  Google Scholar 

  • Davies CT, Dooley P, McDonagh MJ, White MJ (1985) Adaptation of mechanical properties of muscle to high force training in man. J Physiol 365:277–284

    PubMed  CAS  Google Scholar 

  • Enoka RM (1988) Muscle strength and its development. New perspectives. Sports Med 6:146–168. doi:10.2165/00007256-198806030-00003

    Article  PubMed  CAS  Google Scholar 

  • Enoka RM (1997) Neural adaptations with chronic physical activity. J Biomech 30:447–455. doi:10.1016/S0021-9290(96)00170-4

    Article  PubMed  CAS  Google Scholar 

  • Goslin BR, Charteris J (1979) Isokinetic dynamometry: normative data for clinical use in lower extremity (knee) cases. Scand J Rehabil Med 11:105–109

    PubMed  CAS  Google Scholar 

  • Hakkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ (2000) Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol 83:51–62. doi:10.1007/s004210000248

    Article  PubMed  CAS  Google Scholar 

  • Hakkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Malkia E, Kraemer WJ, Newton RU, Alen M (1998) Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 84:1341–1349

    PubMed  CAS  Google Scholar 

  • Hewett TE, Myer GD, Ford KR (2001) Prevention of anterior cruciate ligament injuries. Curr Womens Health Rep 1:218–224

    PubMed  CAS  Google Scholar 

  • Kellis E (1998) Quantification of quadriceps and hamstring antagonist activity. Sports Med 25:37–62. doi:10.2165/00007256-199825010-00004

    Article  PubMed  CAS  Google Scholar 

  • Knapik JJ, Jones BH, Bauman CL, Harris JM (1992) Strength, flexibility and athletic injuries. Sports Med 14:277–288. doi:10.2165/00007256-199214050-00001

    Article  PubMed  CAS  Google Scholar 

  • Knight KL (1980) Strength imbalance and knee injury. Phys Sportsmed 8:140

    Google Scholar 

  • Kvist J (2004) Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med 34:269–280. doi:10.2165/00007256-200434040-00006

    Article  PubMed  Google Scholar 

  • Lieber RL (1992) Skeletal Muscle Structure and Function: Implications for Rehabilitation and Sports Medicine. Williams & Wilkins, Baltimore

    Google Scholar 

  • Macaluso A, Nimmo MA, Foster JE, Cockburn M, McMillan NC, De Vito G (2002) Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle Nerve 25:858–863. doi:10.1002/mus.10113

    Article  PubMed  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    PubMed  CAS  Google Scholar 

  • Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV (2005) In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol 99:1050–1055. doi:10.1152/japplphysiol.01186.2004

    Article  PubMed  Google Scholar 

  • Myer GD, Paterno MV, Ford KR, Quatman CE, Hewett TE (2006) Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther 36:385–402

    PubMed  Google Scholar 

  • Narici M, Kayser B, Barattini P, Cerretelli P (2003) Effects of 17-day spaceflight on electrically evoked torque and cross-sectional area of the human triceps surae. Eur J Appl Physiol 90:275–282. doi:10.1007/s00421-003-0955-7

    Article  PubMed  Google Scholar 

  • O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2008) Assessment of voluntary muscle activation using magnetic stimulation. Eur J Appl Physiol 104:49–55. doi:10.1007/s00421-008-0782-y

    Article  PubMed  Google Scholar 

  • Ostenberg A, Roos E, Ekdahl C, Roos H (1998) Isokinetic knee extensor strength and functional performance in healthy female soccer players. Scand J Med Sci Sports 8:257–264

    PubMed  CAS  Google Scholar 

  • Palmieri-Smith RM, Thomas AC, Wojtys EM (2008) Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med 27:405–424. doi:10.1016/j.csm.2008.02.001 (vii–ix)

    Article  PubMed  Google Scholar 

  • Perotto A (1994) Anatomical guide for the electromyographer, 3rd edn. Springfield

  • Petterson SC, Barrance P, Buchanan T, Binder-Macleod S, Snyder-Mackler L (2008) Mechanisms underlying quadriceps weakness in knee osteoarthritis. Med Sci Sports Exerc 40:422–427. doi:10.1249/MSS.0b013e31815ef285

    Article  PubMed  Google Scholar 

  • Roos MR, Rice CL, Connelly DM, Vandervoort AA (1999) Quadriceps muscle strength, contractile properties, and motor unit firing rates in young and old men. Muscle Nerve 22:1094–1103. doi:10.1002/(SICI)1097-4598(199908)22:8<1094::AID-MUS14>3.0.CO;2-G

    Article  PubMed  CAS  Google Scholar 

  • Spector SA, Gardiner PF, Zernicke RF, Roy RR, Edgerton VR (1980) Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. J Neurophysiol 44:951–960

    PubMed  CAS  Google Scholar 

  • Stackhouse SK, Binder-Macleod SA, Lee SC (2005) Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve 31:594–601. doi:10.1002/mus.20302

    Article  PubMed  Google Scholar 

  • Stackhouse SK, Stevens JE, Lee SC, Pearce KM, Snyder-Mackler L, Binder-Macleod SA (2001) Maximum voluntary activation in nonfatigued and fatigued muscle of young and elderly individuals. Phys Ther 81:1102–1109

    PubMed  CAS  Google Scholar 

  • Stevens JE, Pathare NC, Tillman SM, Scarborough MT, Gibbs CP, Shah P, Jayaraman A, Walter GA, Vandenborne K (2006) Relative contributions of muscle activation and muscle size to plantarflexor torque during rehabilitation after immobilization. J Orthop Res 24:1729–1736. doi:10.1002/jor.20153

    Article  PubMed  Google Scholar 

  • Stevens JE, Stackhouse SK, Binder-Macleod SA, Snyder-Mackler L (2003) Are voluntary muscle activation deficits in older adults meaningful? Muscle Nerve 27:99–101. doi:10.1002/mus.10279

    Article  PubMed  Google Scholar 

  • Tate CM, Williams GN, Barrance PJ, Buchanan TS (2006) Lower extremity muscle morphology in young athletes: an MRI-based analysis. Med Sci Sports Exerc 38:122–128. doi:10.1249/01.mss.0000179400.67734.01

    Article  PubMed  Google Scholar 

  • Vivodtzev I, Wuyam B, Flore P, Levy P (2005) Changes in quadriceps twitch tension in response to resistance training in healthy sedentary subjects. Muscle Nerve 32:326–334. doi:10.1002/mus.20374

    Article  PubMed  Google Scholar 

  • Williams GN, Buchanan TS, Barrance PJ, Axe MJ, Snyder-Mackler L (2005) Quadriceps weakness, atrophy, and activation failure in predicted noncopers after anterior cruciate ligament injury. Am J Sports Med 33:402–407. doi:10.1177/0363546504268042

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NIH-NCMRR Grant # 1 K12 HD055931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn N. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, C., Williams, G.N. Evoked tetanic torque and activation level explain strength differences by side. Eur J Appl Physiol 106, 769–774 (2009). https://doi.org/10.1007/s00421-009-1057-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1057-y

Keywords

Navigation