Skip to main content
Log in

The endothelial microparticle response to a high fat meal is not attenuated by prior exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Triglyceride-rich postprandial lipoproteins are known to activate endothelial cells in vitro, contributing to atherosclerosis. Endothelial microparticles (EMP) are membranous vesicles released into the circulation from vascular endothelial cells that permit cell activation to be monitored in vivo. The objective of the study was to examine changes in EMP following a high fat meal, consumed with and without prior exercise. Eight recreationally active young men underwent two oral fat tolerance tests following either 100 min exercise at 70% VO2peak (EX trial) or no exercise (CON trial) on the previous evening. Postprandial triglycerides were reduced (1.97 ± 0.31 vs. 1.17 ± 0.13 mmol L−1, p < 0.05) and HDL-cholesterol (HDL-C) increased (1.20 ± 0.07 vs. 1.30 ± 0.08 mmol L−1, p < 0.05) in the EX compared to CON trial. EMP (CD31+/42b−) increased postprandially (p < 0.05). However, counts were not different between trials (postprandial CON and EX trial counts × 10μL−1, 3.10 ± 0.14 vs. 3.26 ± 0.37). There were no changes in sICAM-1 or sVCAM-1 postprandially and no differences between trials. Interleukin-6 (IL-6) and leukocytes increased postprandially (p < 0.05). IL-6 values were not different between trials. Leukocytes were higher at 0 h in the EX trial with CON and EX trial values similar at 6 h. EMP, but not sICAM-1 or sVCAM-1, increase in response to a high fat meal. However, EMP are not attenuated by acute exercise, despite a considerable reduction in postprandial lipemia and an increase in HDL-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn YS (2005) Cell-derived microparticles: ‘miniature envoys with many faces’. J Thromb Haemost 3(5):884–887. doi:10.1111/j.1538-7836.2005.01347.x

    Article  PubMed  CAS  Google Scholar 

  • American College of Sports Medicine (2006) ACSM’s guidelines for exercise testing and prescription, 7th edn. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  • Barry OP, Pratico D, Savani RC, FitzGerald GA (1998) Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 102(1):136–144. doi:10.1172/JCI2592

    Article  PubMed  CAS  Google Scholar 

  • Barter PJ, Baker PW, Rye KA (2002) Effect of high-density lipoproteins on the expression of adhesion molecules in endothelial cells. Curr Opin Lipidol 13(3):285–288. doi:10.1097/00041433-200206000-00008

    Article  PubMed  CAS  Google Scholar 

  • Bernal-Mizrachi L, Jy W, Fierro C, Macdonough R, Velazques HA, Purow J et al (2004) Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int J Cardiol 97(3):439–446. doi:10.1016/j.ijcard.2003.10.029

    Article  PubMed  Google Scholar 

  • Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24(5):816–823. doi:10.1161/01.ATV.0000122852.22604.78

    Article  PubMed  CAS  Google Scholar 

  • Ceriello A, Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A et al (2004) Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 53(3):701–710. doi:10.2337/diabetes.53.3.701

    Article  PubMed  CAS  Google Scholar 

  • Chirinos JA, Heresi GA, Velasquez H, Jy W, Jimenez JJ, Ahn E et al (2005) Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J Am Coll Cardiol 45(9):1467–1471. doi:10.1016/j.jacc.2004.12.075

    Article  PubMed  CAS  Google Scholar 

  • Chung BH, Hennig B, Cho BH, Darnell BE (1998) Effect of the fat composition of a single meal on the composition and cytotoxic potencies of lipolytically-releasable free fatty acids in postprandial plasma. Atherosclerosis 141(2):321–332. doi:10.1016/S0021-9150(98)00168-3

    Article  PubMed  CAS  Google Scholar 

  • De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK (1998) Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: Role of a superoxide-producing NADH oxidase. Circ Res 82(10):1094–1101

    PubMed  Google Scholar 

  • Doshi SN, Naka KK, Payne N, Jones CJ, Ashton M, Lewis MJ et al (2001) Flow-mediated dilatation following wrist and upper arm occlusion in humans: The contribution of nitric oxide. Clin Sci (Lond) 101(6):629–635. doi:10.1042/CS20010033

    CAS  Google Scholar 

  • Esposito K, Ciotola M, Schisano B, Gualdiero R, Sardelli L, Misso L et al (2006) Endothelial microparticles correlate with endothelial dysfunction in obese women. J Clin Endocrinol Metab 91(9):3676–3679. doi:10.1210/jc.2006-0851

    Article  PubMed  CAS  Google Scholar 

  • Ferreira AC, Peter AA, Mendez AJ, Jimenez JJ, Mauro LM, Chirinos JA et al (2004) Postprandial hypertriglyceridemia increases circulating levels of endothelial cell microparticles. Circulation 110(23):3599–3603. doi:10.1161/01.CIR.0000148820.55611.6B

    Article  PubMed  Google Scholar 

  • Gill JM, Hardman AE (2003) Exercise and postprandial lipid metabolism: An update on potential mechanisms and interactions with high-carbohydrate diets. J Nutr Biochem 14(3):122–132. doi:10.1016/S0955-2863(02)00275-9 review

    Article  PubMed  CAS  Google Scholar 

  • Gill JM, Caslake MJ, McAllister C, Tsofliou F, Ferrell WR, Packard CJ et al (2003) Effects of short-term detraining on postprandial metabolism, endothelial function, and inflammation in endurance-trained men: Dissociation between changes in triglyceride metabolism and endothelial function. J Clin Endocrinol Metab 88(9):4328–4335. doi:10.1210/jc.2003-030226

    Article  PubMed  CAS  Google Scholar 

  • Gokce N, Duffy SJ, Hunter LM, Keaney JF, Vita JA (2001) Acute hypertriglyceridemia is associated with peripheral vasodilation and increased basal flow in healthy young adults. Am J Cardiol 88(2):153–159. doi:10.1016/S0002-9149(01)01610-1

    Article  PubMed  CAS  Google Scholar 

  • Hijmering ML, Stroes ES, Pasterkamp G, Sierevogel M, Banga JD, Rabelink TJ (2001) Variability of flow mediated dilation: consequences for clinical application. Atherosclerosis 157(2):369–373. doi:10.1016/S0021-9150(00)00748-6

    Article  PubMed  CAS  Google Scholar 

  • Horstman LL, Jy W, Jimenez JJ, Ahn YS (2004) Endothelial microparticles as markers of endothelial dysfunction. Front Biosci 9:1118–1135. doi:10.2741/1270

    Article  PubMed  CAS  Google Scholar 

  • Hwang SJ, Ballantyne CM, Sharrett AR, Smith LC, Davis CE, Gotto AM Jr et al (1997) Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the atherosclerosis risk in communities (ARIC) study. Circulation 96(12):4219–4225

    PubMed  CAS  Google Scholar 

  • Hyson DA, Paglieroni TG, Wun T, Rutledge JC (2002) Postprandial lipemia is associated with platelet and monocyte activation and increased monocyte cytokine expression in normolipemic men. Clin Appl Thromb Hemost 8(2):147–155. doi:10.1177/107602960200800211

    Article  PubMed  CAS  Google Scholar 

  • Jimenez JJ, Jy W, Mauro LM, Horstman LL, Bidot CJ, Ahn YS (2005) Endothelial microparticles (EMP) as vascular disease markers. Adv Clin Chem 39:131–157. doi:10.1016/S0065-2423(04)39005-0

    Article  PubMed  Google Scholar 

  • Koga H, Sugiyama S, Kugiyama K, Watanabe K, Fukushima H, Tanaka T et al (2005) Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 45(10):1622–1630. doi:10.1016/j.jacc.2005.02.047

    Article  PubMed  CAS  Google Scholar 

  • Marsh SA, Coombes JS (2005) Exercise and the endothelial cell. Int J Cardiol 99(2):165–169. doi:10.1016/j.ijcard.2004.02.005

    Article  PubMed  Google Scholar 

  • Mc Clean CM, Mc Laughlin J, Burke G, Murphy MH, Trinick T, Duly E et al (2007) The effect of acute aerobic exercise on pulse wave velocity and oxidative stress following postprandial hypertriglyceridemia in healthy men. Eur J Appl Physiol 100(2):225–234. doi:10.1007/s00421-007-0422-y

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H et al (1996) High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 88(9):3456–3464

    PubMed  CAS  Google Scholar 

  • Moyna NM, Thompson PD (2004) The effect of physical activity on endothelial function in man. Acta Physiol Scand 180(2):113–123. doi:10.1111/j.0001-6772.2003.01253.x

    Article  PubMed  CAS  Google Scholar 

  • Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari AM, Paolisso G et al (2002) Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: Role of fat and carbohydrate meals. J Am Coll Cardiol 39(7):1145–1150. doi:10.1016/S0735-1097(02)01741-2

    Article  PubMed  CAS  Google Scholar 

  • Padilla J, Harris RA, Fly AD, Rink LD, Wallace JP (2006) The effect of acute exercise on endothelial function following a high-fat meal. Eur J Appl Physiol 98(3):256–262. doi:10.1007/s00421-006-0272-z

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy S, Barnett J, Fong LG (1990) High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta 1044(2):275–283

    PubMed  CAS  Google Scholar 

  • Plotnick GD, Corretti MC, Vogel RA (1997) Effect of antioxidant vitamins on the transient impairment of endothelium-dependent brachial artery vasoactivity following a single high-fat meal. JAMA 278(20):1682–1686. doi:10.1001/jama.278.20.1682

    Article  PubMed  CAS  Google Scholar 

  • Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M et al (2003) Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 41(2):211–217. doi:10.1161/01.HYP.0000049760.15764.2D

    Article  PubMed  CAS  Google Scholar 

  • Rein D, Paglieroni TG, Wun T, Pearson DA, Schmitz HH, Gosselin R et al (2000) Cocoa inhibits platelet activation and function. Am J Clin Nutr 72(1):30–35

    PubMed  CAS  Google Scholar 

  • Spieker LE, Sudano I, Hurlimann D, Lerch PG, Lang MG, Binggeli C et al (2002) High-density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation 105(12):1399–1402. doi:10.1161/01.CIR.0000013424.28206.8F

    Article  PubMed  CAS  Google Scholar 

  • Thompson D, Williams C, Garcia-Roves P, McGregor SJ, McArdle F, Jackson MJ (2003) Post-exercise vitamin C supplementation and recovery from demanding exercise. Eur J Appl Physiol 89(3–4):393–400. doi:10.1007/s00421-003-0816-4

    Article  PubMed  CAS  Google Scholar 

  • Tsai WC, Li YH, Lin CC, Chao TH, Chen JH (2004) Effects of oxidative stress on endothelial function after a high-fat meal. Clin Sci (Lond) 106(3):315–319. doi:10.1042/CS20030227

    Article  CAS  Google Scholar 

  • Tushuizen ME, Nieuwland R, Scheffer PG, Sturk A, Heine RJ, Diamant M (2006) Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative stress and cellular microparticles in healthy men. J Thromb Haemost 4(5):1003–1010. doi:10.1111/j.1538-7836.2006.01914.x

    Article  PubMed  CAS  Google Scholar 

  • Tushuizen ME, Nieuwland R, Rustemeijer C, Hensgens BE, Sturk A, Heine RJ et al (2007) Elevated endothelial microparticles following consecutive meals are associated with vascular endothelial dysfunction in type 2 diabetes. Diabetes Care 30(3):728–730. doi:10.2337/dc06-1473

    Article  PubMed  Google Scholar 

  • Tyldum GA, Schjerve IE, Tjonna AE, Kirkeby-Garstad I, Stolen TO, Richardson RS et al (2009) Endothelial dysfunction induced by post-prandial lipemia: Complete protection afforded by high-intensity aerobic interval exercise. J Am Coll Cardiol 53(2):200–206. doi:10.1016/j.jacc.2008.09.033

    Article  PubMed  CAS  Google Scholar 

  • van Oostrom AJ, Rabelink TJ, Verseyden C, Sijmonsma TP, Plokker HW, De Jaegere PP et al (2004) Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis 177(1):175–182. doi:10.1016/j.atherosclerosis.2004.07.004

    Article  PubMed  CAS  Google Scholar 

  • VanWijk MJ, VanBavel E, Sturk A, Nieuwland R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59(2):277–287. doi:10.1016/S0008-6363(03)00367-5

    Article  PubMed  CAS  Google Scholar 

  • Warburton DE, Nicol CW, Bredin SS (2006) Health benefits of physical activity: The evidence. CMAJ 174(6):801–809. doi:10.1503/cmaj.051351

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the individuals who participated in this study. The study was supported by Technological Sector Strand III funding to Waterford Institute of Technology and by Health Research Board of Ireland (RP/2005/184) and Science Foundation Ireland (04/BR/B0577) funding to Dublin City University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Harrison.

Additional information

M. Harrison and R. P. Murphy contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, M., Murphy, R.P., O’Connor, P.L. et al. The endothelial microparticle response to a high fat meal is not attenuated by prior exercise. Eur J Appl Physiol 106, 555–562 (2009). https://doi.org/10.1007/s00421-009-1050-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1050-5

Keywords

Navigation