European Journal of Applied Physiology

, Volume 106, Issue 1, pp 131–138 | Cite as

The effect of 4 weeks β-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres

  • Iain P. KendrickEmail author
  • Hyo Jeong Kim
  • Roger Charles Harris
  • Chang Keun Kim
  • Viet H. Dang
  • Thanh Q. Lam
  • Toai T. Bui
  • John A. Wise
Original Article


Seven male students were supplemented with β-alanine (β-ALG) for 4 weeks (6.4 g day−1) and seven with a matching placebo (PLG). Subjects undertook 4 weeks of isokinetic training with the right leg (T) whilst the left leg was untrained (UT), serving as a control. Each training session consisted of 10 × 10 maximal 90° extension and flexion contractions at 180°/s using a Kin-Com isokinetic dynamometer, with 1 min rest between bouts. Muscle biopsies were taken from the vastus lateralis immediately before and at the end of the supplementation period. Following freeze drying muscle fibres were dissected and characterised by their MHC profile, as type I, IIa, IIx, or as hybrids of these. Carnosine was measured by HPLC. There was a significant increase in carnosine in both T and UT legs of the β-ALG (9.63 ± 3.92 mmol kg−1 dry muscle and 6.55 ± 2.36 mmol kg−1 dry muscle respectively). There was a significant increase in the carnosine content of all fibre phentotypes, with no significant difference between types. There were no significant differences in the changes in muscle or in fibres between the T and UT legs. In contrast there was no significant change in the carnosine content in either the T or UT legs with placebo. The results indicate that 4 weeks training has no effect on the muscle carnosine content. Whilst an increase was seen with β-alanine supplementation, this was not further influenced by training. These findings suggest that β-alanine availability is the main factor regulating muscle carnosine synthesis.


Carnosine β-Alanine Muscle Muscle fibres Buffering 


  1. Ahlborg B, Bergrström J, Ekelund L-G, Guarnieri GF, Harris RC, Hultman E, Nordesjö L-O (1972) Muscle metabolism during isometric exercise performed at constant force. J Appl Physiol 33:224–228PubMedGoogle Scholar
  2. Bakardjiev A, Bauer K (1994) Transport of β-alanine and biosynthesis of carnosine by skeletal muscle cells in primary culture. Eur J Biochem 225:617–623. doi: 10.1111/j.1432-1033.1994.00617.x PubMedCrossRefGoogle Scholar
  3. Batrukova MA, Rubtsov AM (1997) Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic Ca-release channels. Biochim Biophys Acta 21:142–150Google Scholar
  4. Bergström J (1962) Muscle electrolytes in man determination by neutron activation analysis on needle biopsy specimens. A study on normal subjects, kidney patients and patients with chronic diarrhoea. Scand J Clin Lab Invest 14:100–110. doi: 10.3109/00365516209075162 CrossRefGoogle Scholar
  5. Boldyrev AA, Dupin AM, Pindel EV, Severin SE (1988) Antioxidative properties of histidine-containing diepeptides from skeletal muscles of vertebrates. Comp Biochem Physiol 89:245–250. doi: 10.1016/0305-0491(88)90218-0 CrossRefGoogle Scholar
  6. Derave W, Ozdemir MS, Harris R, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E (2007) Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol 103:1736–1743. doi: 10.1152/japplphysiol.00397.2007 PubMedCrossRefGoogle Scholar
  7. Dukta TL, Lamb GD (2004) Effects of carnosine on excitation-contraction coupling in mechanically-skinned rat skeletal muscle. J Muscle Res Cell Motil 25:203–213. doi: 10.1023/B:JURE.0000038265.37022.c5 CrossRefGoogle Scholar
  8. Dunnett M, Harris RC (1997) High-performance liquid chromatographic determination of imidazole dipeptides, histidine, 1-methylhistidine and 3-methylhistidine in equine and camel muscle and individual muscle fibres. J Chromatogr B Analyt Technol Biomed Life Sci 688:47–55. doi: 10.1016/S0378-4347(97)88054-1 CrossRefGoogle Scholar
  9. Fritzson P (1957) The catabolism of C14-labeled uracil, dihydro-uracil and β-ureidopropioninc acid in rat liver slices. J Biol Chem 226:223–228PubMedGoogle Scholar
  10. Fritzson P, Pihl A (1957) The catabolism of C14-labeled uracil, dihydrouracil, and β-ureidopropionic acid in the intact rat. J Biol Chem 226:229–235PubMedGoogle Scholar
  11. Harris RC, Söderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle in normal subjects by creatine supplementation. Clin Sci 83:367–374PubMedGoogle Scholar
  12. Harris RC, Dunnett M, Greenhaff PL (1998) Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. J Sports Sci 16:639–643. doi: 10.1080/026404198366443 CrossRefGoogle Scholar
  13. Harris RC, Tallon MJ, Dunnett M, Boobis LH, Coakley J, Kim HJ, Fallowfield JL, Chester CA, Sale C, Wise JA (2006) The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30:279–289. doi: 10.1007/s00726-006-0299-9 PubMedCrossRefGoogle Scholar
  14. Harris RC, Jones G, Hill CH, Kendrick IP, Boobis L, Kim CK, Kim HJ, Dang VH, Edge J, Wise JA (2007) The carnosine content of V lateralis in vegetarians and omnivores. FASEB J 21:769.20CrossRefGoogle Scholar
  15. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007) Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 32:225–233. doi: 10.1007/s00726-006-0364-4 PubMedCrossRefGoogle Scholar
  16. Hipkiss AR, Preston JE, Himsworth DTM, Worthington VC, Keown M, Michaelis J, Lawrence J, Mateen A, Allende L, Eagles PAM, Abbot NJ (1998) Pluripotent protective effects of carnosine, a naturally occurring dipeptide. Annu N Y Acad Sci 854:37–53. doi: 10.1111/j.1749-6632.1998.tb09890.x CrossRefGoogle Scholar
  17. Hoffmann AM, Bakardjiev A, Bauer K (1996) Carnosine-synthesis in cultures of rat glial cells is restricted to oligodendrocytes and carnosine uptake to astrocytes. Neurosci Lett 215:29–32. doi: 10.1016/S0304-3940(96)12937-2 PubMedCrossRefGoogle Scholar
  18. Horinishi H, Grillo M, Margolis FL (1978) Purification and characterization of carnosine synthetase from mouse olfactory bulbs. J Neurochem 31:909–919. doi: 10.1111/j.1471-4159.1978.tb00127.x PubMedCrossRefGoogle Scholar
  19. Inigo C, Barber A, Lostao MP (2006) Na+ and pH dependence of proline and beta-alanine absorption in rat small intestine. Acta Physiol (Oxf) 186:271–278. doi: 10.1111/j.1748-1716.2006.01538.x CrossRefGoogle Scholar
  20. Jackson MC, Kucera CM, Lenney JF (1991) Purification and properties of human serum carnosinase. Clin Chim Acta 196:193–205. doi: 10.1016/0009-8981(91)90073-L PubMedCrossRefGoogle Scholar
  21. Kalyankar GD, Meister A (1959) Enzymatic synthesis of carnosine and related beta-alanyl and gamma-aminobutyryl peptides. J Biol Chem 234:3210–3218PubMedGoogle Scholar
  22. Kanner BI, Bendahan A (1990) Two pharmacologically distinct sodium- and chloride-coupled high-affinity gamma-aminobutyric acid transporters are present in plasma membrane vesicles and reconstituted preparations from rat brain. Proc Natl Acad Sci USA 87:2550–2554. doi: 10.1073/pnas.87.7.2550 PubMedCrossRefGoogle Scholar
  23. Kendrick IP, Kim HJ, Harris RC, Kim CK, Dang VH, Lam TQ, Bui TT, Smith M, Wise JA (2008) The effects of 10 weeks of resistance training combined with β-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids 34(4):547–554. doi: 10.1007/s00726-007-0008-3 PubMedCrossRefGoogle Scholar
  24. Kim HJ, Kim CK, Harris RC, Harris DB, Sale C, Wise JA (2005) Effect on muscle fibre morphology and carnosine content after 12 days training of Korean speed skaters. Med Sci Sports Exerc 37:S–192.Google Scholar
  25. Komura J, Tamai I, Senmaru M, Terasaki T, Sai Y, Tsuji A (1996) Sodium and chloride ion-dependent transport of beta-alanine across the blood-brain barrier. J Neurochem 67:330–335PubMedCrossRefGoogle Scholar
  26. Liu QR, López-Corcuera B, Nelson H, Mandiyan S, Nelson N (1992) Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc Natl Acad Sci USA 89:12145–12149. doi: 10.1073/pnas.89.24.12145 PubMedCrossRefGoogle Scholar
  27. Liu M, Russell RL, Beigelman L, Handschumacher RE, Pizzorno G (1999) β-alanine and alpha-fluoro-beta-alanine concentrative transport in rat hepatocytes is mediated by GABA transporter GAT-2. Am J Physiol 276:G206–G210PubMedGoogle Scholar
  28. Mannion AF, Jakeman PM, Willan PL (1994) Effects of isokinetic training of the knee extensors on high-intensity exercise performance and skeletal muscle buffering. Eur J Appl Physiol Occup Physiol 68:356–361. doi: 10.1007/BF00571457 PubMedCrossRefGoogle Scholar
  29. Miyamoto Y, Nakamura H, Hoshi T, Ganapathy V, Leibach FH (1990) Uphill transport of beta-alanine in intestinal brush-border membrane vesicles. Am J Physiol 259:G372–G379PubMedGoogle Scholar
  30. Ng RH, Marshall FD (1978) Regional and subcellular distribution of homocarnosine-carnosine synthetase in the central nervous system of rats. J Neurochem 30:187–190. doi: 10.1111/j.1471-4159.1978.tb07051.x CrossRefGoogle Scholar
  31. Parkhouse WS, McKenzie DC, Hochachka PW, Ovalle WK (1985) Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol 58:14–17PubMedGoogle Scholar
  32. Pegova A, Abe H, Boldyrev A (2000) Hydrolysis of carnosine and related compounds by mammalian carnosinases. Comp Biochem Physiol B Biochem Mol Biol 127:443–446. doi: 10.1016/S0305-0491(00)00279-0 PubMedCrossRefGoogle Scholar
  33. Ponte J, Harris RC, Hill CA, Sale C, Jones GA, Kim HJ, Wise JA (2007) Effect of 14 and 28 days β-Alanine supplementation on isometric endurance of the knee extensors. J Sports Sci 25:344Google Scholar
  34. Ramamoorthy S, Leibach FH, Mahesh VB, Han TH, Yang-Feng T, Blakely RD, Ganapathy V (1994) Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta. Biochem J 300:893–900PubMedGoogle Scholar
  35. Skaper SD, Das S, amd Marshall FD (1973) Some properties of a homocarnosine-carnosine synthetase isolated from rat brain. J Neurochem 21:1429–1445. doi: 10.1111/j.1471-4159.1973.tb06027.x PubMedCrossRefGoogle Scholar
  36. Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris RC (2007) Effects of β-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 32:381–386. doi: 10.1007/s00726-006-0474-z PubMedCrossRefGoogle Scholar
  37. Suzuki Y, Ito O, Takahashi H, Takamatsu K (2004) The effect of sprint training on skeletal muscle carnosine in humans. Int J Sport Health Sci 2:105–110Google Scholar
  38. Tallon MJ, Harris RC, Boobis L, Fallowfield J, Wise JA (2005) The carnosine content of vastus lateralis is elevated in resistance trained bodybuilders. J Strength Cond Res 19:725–729. doi: 10.1519/041018.1 PubMedCrossRefGoogle Scholar
  39. Talmadge RJ, Roy RR (1993) Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol 75:2337–2340PubMedGoogle Scholar
  40. Winnick RE, Winnick T (1959) Carnosine-anserine synthetase of muscle I. Preparation and properties of soluble enzyme from chick muscle. Biochim Biophys Acta 31:47–55. doi: 10.1016/0006-3002(59)90437-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Iain P. Kendrick
    • 1
    • 5
    Email author
  • Hyo Jeong Kim
    • 2
  • Roger Charles Harris
    • 1
  • Chang Keun Kim
    • 2
  • Viet H. Dang
    • 3
  • Thanh Q. Lam
    • 3
  • Toai T. Bui
    • 3
  • John A. Wise
    • 4
  1. 1.University of ChichesterChichesterUK
  2. 2.Korea National Sport UniversitySeoulKorea
  3. 3.National University of Physical Education and Sport Science IIHo Chi Minh CityVietnam
  4. 4.Natural Alternatives InternationalSan MarcosUSA
  5. 5.University of ChichesterChichesterUK

Personalised recommendations