Skip to main content

Advertisement

Log in

The effect of hypohydration severity on the physiological, psychological and renal hormonal responses to hypoxic exercise

European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Evidence of the effect of dehydration on physiological responses to hypoxia is limited. The purpose of this study was to determine the effect of hypohydration severity on physiological, renal hormonal and psychological responses to acute hypoxia. Eight males completed intermittent walking tests under normobaric hypoxic conditions (FI O2 = 0.13) after completing four separate hypohydration protocols, causing change in body mass of approximately 0% (EU), −1% (H1), −2% (H2) and −3% (H3). Physiological and psychological markers were monitored throughout the 125 min test. Fluid controlling hormones were measured pre and post exposure. Heart rate, core temperature, peripheral arterial oxygen saturation (SpO2), minute ventilation and urine osmolality were found to be significantly different between hydration conditions and correlated with Lake Louise Questionnaire score (LLQ) (< 0.05). LLQ score increased with hypohydration severity above H2 (EU 1.3 ± 1; H1 1.2 ± 1; H2 2.7 ± 2; H3 3.9 ± 2) (< 0.001). Antidiuretic hormone and aldosterone increased over the test, but were not different between hydration conditions (< 0.05). Atrial natriuretic peptide showed no change over time, or with conditions. Therefore, renal hormones are not influenced by hypohydration severity during moderate intensity hypoxic exercise. Hypohydration less than −2% induces greater physiological strain during hypoxic exercise and may cause rise in symptoms such as, fatigue, headache, nausea and lightheadedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Aoki VS, Robinson SM (1971) Body hydration and the incidence and severity of acute mountain sickness. J Appl Physiol 31:363–367

    PubMed  CAS  Google Scholar 

  • Armstrong LE (2000) Performing in extreme environments. Hum Kinetics, Champaign

    Google Scholar 

  • Bartsch P, Shaw S, Franciolli M, Gnadinger MP, Weidmann P (1988) Atrial natriuretic peptide in acute mountain sickness. J Appl Physiol 65:1929–1937

    PubMed  CAS  Google Scholar 

  • Bartsch P, Maggiorini M, Schobersberger W, Shaw S, Rascher W, Girard J, Weidmann P, Oelz O (1991) Enhanced exercise induced rise of aldosterone and vasopressin preceding mountain sickness. J Appl Physiol 71:136–143

    PubMed  CAS  Google Scholar 

  • Bartsch P, Bailey DM, Berger MM, Knauth M, Baumgartner RF (2004) Acute mountain sickness: controversies and advances. High Alt Med Biol 4:110–124. doi:10.1089/1527029041352108

    Article  Google Scholar 

  • Basnyat B, Sherpa N, Basyal G, Adhirikari P (1998) Children in the mountains. BMJ 317:540

    PubMed  CAS  Google Scholar 

  • Basnyat B, Ogilvie RI, White AP, O’Brien B, Hackett PH, Roach RC (2001) High-altitude illness. N Engl J Med 345:1279–1281. doi:10.1056/NEJM200110253451713

    Article  PubMed  CAS  Google Scholar 

  • Borg G (1998) Borg’s perceived exertion and pain scales. Human Kinetics, Stockholm

    Google Scholar 

  • Bouissou P, Peronnet F, Brisson G, Helie R, Ledoux M (1987) Fluid-electrolyte shift and renin-aldosterone responses to exercise under hypoxia. Horm Metab Res 19:331–334. doi:10.1055/s-2007-1011814

    Article  PubMed  CAS  Google Scholar 

  • Claybaugh JR, Hansen JE, Wozniak DB (1978) Response of antidiuretic hormone to acute exposure to mild and severe hypoxia in man. J Endocrinol 77:157–160. doi:10.1677/joe.0.0770157

    Article  PubMed  CAS  Google Scholar 

  • Claybaugh JR, Wade CE, Sato AK, Cucinell SA, Lane JC, Maher JT (1982) Antidiuretic hormone responses to eucapnic and hypocapnic hypoxia in humans. J Appl Physiol 53:815–823

    PubMed  CAS  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248

    PubMed  CAS  Google Scholar 

  • Dipasquale DM, Kolkhorst FW, Nichols JF, Buono MJ (2002) Effect of acute normobaric hypoxia on peripheral sweat rate. High Alt Med Biol 3:289–292. doi:10.1089/152702902320604278

    Article  PubMed  Google Scholar 

  • Engell DB, Maller O, Sawka MN, Francesconi RN, Drolet L, Young AJ (1987) Thirst and fluid intake following graded hypohydration levels in humans. Physiol Behav 40:229–236. doi:10.1016/0031-9384(87)90212-5

    Article  PubMed  CAS  Google Scholar 

  • Freund BJ, Shizuru EM, Hashiro GM, Claybaugh JR (1991) Hormonal, electrolyte, and renal responses to exercise are intensity dependent. J Appl Physiol 70:900–906

    PubMed  CAS  Google Scholar 

  • Gagge AP, Stolwijk JA, Saltin B (1969) Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures. Environ Res 2:209–229. doi:10.1016/0013-9351(69)90037-1

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf JE, Castle BL (1971) Exercise temperature regulation in man during hypohydration and hyperhydration. J Appl Physiol 30:847–853

    PubMed  CAS  Google Scholar 

  • Hackett PH, Roach RC (2001) High-altitude illness. N Engl J Med 345:107–114. doi:10.1056/NEJM200107123450206

    Article  PubMed  CAS  Google Scholar 

  • Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of men. Br J Nutr 40:497–504. doi:10.1079/BJN19780152

    Article  PubMed  CAS  Google Scholar 

  • Lawrence DL, Skatrud JB, Shenker Y (1990) Effect of hypoxia on atrial natriuretic factor and aldosterone regulation in humans. Am J Physiol Endocrinol Metab 258:E243–E248

    CAS  Google Scholar 

  • Loeppky JA, Icenogle M, Maes D, Riboni K, Hinghofer-Szalkay H, Roach RC (2005) Early fluid retention and severe acute mountain sickness. J Appl Physiol 98:591–597. doi:10.1152/japplphysiol.00527.2004

    Article  PubMed  Google Scholar 

  • Meehan RT (1986) Renin, aldosterone, and vasopressin responses to hypoxia during 6 hours of mild exercise. Aviat Space Environ Med 57:960–965

    PubMed  CAS  Google Scholar 

  • Montain SJ, Coyle EF (1992) Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol 73:1340–1350

    PubMed  CAS  Google Scholar 

  • Moran DS, Montain SJ, Pandolf KB (1998) Evaluation of different levels of hydration using a new physiological strain index. Am J Physiol Regul Integr Comp Physiol 275:R854–R860

    CAS  Google Scholar 

  • Nadel ER, Fortney SM, Wenger CB (1980) Effect of hydration state of circulatory and thermal regulations. J Appl Physiol 49:715–721

    PubMed  CAS  Google Scholar 

  • Nerín MA, Palop J, Montaño JA, Morandeira JR, Vázquez M (2006) Acute mountain sickness: influence of fluid intake. Wilderness Environ Med 17:215–220

    PubMed  Google Scholar 

  • Nybo L, Jensen T, Nielsen B, Gonzalez-Alonso J (2001) Effects of marked hyperthermia with and without dehydration on VO2 kinetics during intense exercise. J Appl Physiol 90:1057–1064

    PubMed  CAS  Google Scholar 

  • Piccoli A, Piazza P, Noventa D, Pillion L, Zaccaria M (1996) A new method for monitoring hydration at high altitude by bioimpedance analysis. Med Sci Sports Exerc 28:1517–1522. doi:10.1097/00005768-199612000-00012

    PubMed  CAS  Google Scholar 

  • Rennie D, Bezruchka S, Roberts G, Ivy JL, Hultgren HN (1993) Viewpoints: water intake at high altitude. J Wilderness Med 4:224–227

    Google Scholar 

  • Richardson A, Twomey R, Watt P, Maxwell N (2008) Physiological responses to graded acute normobaric hypoxia using an intermittent walking protocol. Wilderness Environ Med 19:252–260. doi:10.1580/07-WEME-OR-143.1

    Article  PubMed  Google Scholar 

  • Roach RC, Bärtsch P, Hackett PH Oelz O, The Lake Louise AMS Scoring Consensus Committee (1993) The lake louise acute mountain sickness scoring system. In: Hypoxia and molecular medicine (Proceedings of the 8th international hypoxia symposium held at Lake Louise, Canada, February 9–13, 1993), Queen City Printers Inc., Burlington, Vermont, pp 272–274

  • Sampson JB, Cymerman A, Burse RL, Maher JT, Rock PB (1983) Procedures for the measurement of acute mountain sickness. Aviat Space Environ Med 54:1063–1073

    PubMed  CAS  Google Scholar 

  • Savourey G, Launay J, Besnard Y, Guinet-Lebreton A, Alonso A, Sauvet F, Bourrilhon C (2007) Normo or hypobaric hypoxic tests: propositions for the determination of the individual susceptibility to altitude illnesses. J Appl Physiol 100:193–205. doi:10.1007/s00421-007-0417-8

    Article  Google Scholar 

  • Sawka MN, Francesconi RP, Young AJ, Pandolf KB (1984) Influence of hydration level and body fluids on exercise performance in the heat. JAMA 252:1165–1169. doi:10.1001/jama.252.9.1165

    Article  PubMed  CAS  Google Scholar 

  • Sawka MN, Young AJ, Francesconi RP, Muza SR, Pandolf KB (1985) Thermoregulatory and blood responses during exercise at graded hypohydration levels. J Appl Physiol 59:1394–1401

    PubMed  CAS  Google Scholar 

  • Sawka MN, Montain SJ, Latzka WA (2000) Hydration effects on thermoregulation and performance in the heat. Comp Biochem Physiol 128:679–690

    Google Scholar 

  • Senay LC (1979) Temperature regulation and hypohydration: a singular view. J Appl Physiol 47:1–7

    PubMed  Google Scholar 

  • Viru A (1992) Plasma hormones and physical exercise: a review. Int J Sports Med 13:201–207. doi:10.1055/s-2007-1021254

    Article  PubMed  CAS  Google Scholar 

  • Weltman A, Snead D, Stein P, Seip R, Schurrer R, Rutt R, Weltman J (1990) Reliability and validity of a continuous incremental treadmill protocol for the determination of lactate threshold, fixed blood lactate concentrations, and VO2max. Int J Sports Med 11:26–32. doi:10.1055/s-2007-1024757

    Article  PubMed  CAS  Google Scholar 

  • Westerterp KR (2001) Energy and water balance at high altitude. News Physiol Sci 16:134–137

    PubMed  CAS  Google Scholar 

  • Wingo JE, Lafrenz AJ, Ganio MS, Edwards GL, Cureton KJ (2005) Cardiovascular drift is related to reduced maximal oxygen uptake druing heat stress. Med Sci Sports Exerc 37:248–255. doi:10.1249/01.MSS.0000152731.33450.95

    Article  PubMed  Google Scholar 

  • Wright AD, Jones GT, Fletcher RF, Mackintosh JH, Bradwell AR (1985) The environmental symptoms questionnaire in acute mountain sickness. Aviat Space Environ Med 56:572–575

    PubMed  CAS  Google Scholar 

  • Wyndham CH, Strydom NB (1969) The danger of inadequate water intake during marathon running. S Afr Med J 43:893–896

    PubMed  CAS  Google Scholar 

  • Zaccaria M, Rocco S, Noventa D, Varnier M, Opocher G (1998) Sodium regulating hormones at high altitude: basal and post-exercise levels. J Clin Endocrinol Metab 83:570–574. doi:10.1210/jc.83.2.570

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, A., Watt, P. & Maxwell, N. The effect of hypohydration severity on the physiological, psychological and renal hormonal responses to hypoxic exercise. Eur J Appl Physiol 106, 123–130 (2009). https://doi.org/10.1007/s00421-009-0997-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-0997-6

Keywords

Navigation