Skip to main content
Log in

Effect of two durations of short-term intermittent hypoxia on ventilatory chemosensitivity in humans

  • Short Communication
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to clarify the influence of duration of intermittent hypoxia per day on ventilatory chemosensitivity. Subjects were assigned to three different groups according to the duration of exposure to intermittent hypoxia (12.3 ± 0.2% O2): a first group (H-1, n = 6) was exposed to hypoxia for 1 h per day, the second group (H-2, n = 6) was exposed for 3 h per day, and the third (C, n = 7) was used as control. Hypoxic and hypercapnic ventilatory responses (HVR and HCVR) were determined before and after 1 week of intermittent hypoxia. HVR was increased significantly (P < 0.05) after intermittent hypoxia in both the H-1 and H-2 groups. However, there was no significant difference in magnitude of increased HVR between H-1 and H-2 groups. HCVR did not show any changes in all groups after intermittent hypoxia. These results suggest that 1 h of daily exposure is as equally effective as 3 h of daily exposure to severe hypoxia for a short period for enhancing ventilatory chemosensitivity to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ainslie PN, Kolb JC, Ide K, Poulin MJ (2003) Effects of five nights of normobaric hypoxia on the ventilatory responses to acute hypoxia and hypercapnia. Respir Physiol Neurobiol 138:193–204. doi:10.1016/S1569-9048(03)00190-3

    Article  PubMed  Google Scholar 

  • Beidleman BA, Muza SR, Fulco CS, Cymerman A, Ditzler DT, Stulz D, Staab JE, Robinson SR, Skrinar GS, Lewis SF, Sawka MN (2003) Intermittent altitude exposures improve muscular performance at 4,300 m. J Appl Physiol 95:1824–1832

    PubMed  Google Scholar 

  • Beidleman BA, Muza SR, Fulco CS, Cymerman A, Ditzler D, Stulz D, Staab JE, Skrinar GS, Lewis SF, Sawka MN (2004) Intermittent altitude exposures reduce acute mountain sickness at 4,300 m. Clin Sci 106:321–328. doi:10.1042/CS20030161

    Article  PubMed  Google Scholar 

  • Beidleman BA, Muza SR, Fulco CS, Cymerman A, Sawka MN, Lewis SF, Skrinar GS (2008) Seven intermittent exposures to altitude improves exercise performance at 4,300 m. Med Sci Sports Exerc 40:141–148

    PubMed  Google Scholar 

  • Bisgard GE, Neubauer JA (1995) Peripheral and central effects of hypoxia. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn. Marcel Dekker, New York, pp 617–668

    Google Scholar 

  • Burtscher M, Brandstatter E, Gatterer H (2008) Preacclimatization in simulated altitudes. Sleep Breath 12:109–114. doi:10.1007/s11325-007-0127-9

    Article  PubMed  CAS  Google Scholar 

  • Dwinell MR, Powell FL (1999) Chronic hypoxia enhances the phrenic nerve response to arterial chemoreceptor stimulation in anesthetized rats. J Appl Physiol 87:817–823

    PubMed  CAS  Google Scholar 

  • Forster HV, Dempsey JA, Birnbaum ML, Reddan WG, Thoden J, Grover RF, Rankin J (1971) Effect of chronic exposure to hypoxia on ventilatory response to CO2 and hypoxia. J Appl Physiol 31:586–592

    PubMed  CAS  Google Scholar 

  • Foster GE, McKenzie DC, Milsom WK, Sheel AW (2005) Effects of two protocols of intermittent hypoxia on humans ventilatory, cardiovascular, and cerebral responses to hypoxia. J Physiol 567:689–699. doi:10.1113/jphysiol.2005.091462

    Article  PubMed  CAS  Google Scholar 

  • Foster GE, McKenzie DC, Sheel AW (2006) Effect of enhanced human chemosensitivity on ventilatory responses to exercise. Exp Physiol 91:221–228. doi:10.1113/expphysiol.2005.032276

    Article  PubMed  Google Scholar 

  • Garcia N, Hopkins SR, Powell FL (2000) Effects of intermittent hypoxia on the isocapnic hypoxic ventilatory response and erythropoiesis in humans. Respir Physiol 123:39–49. doi:10.1016/S0034-5687(00)00145-6

    Article  PubMed  CAS  Google Scholar 

  • Katayama K, Sato Y, Ishida K, Mori S, Miyamura M (1998) The effects of intermittent exposure to hypoxia during endurance exercise training on the ventilatory responses to hypoxia and hypercapnia in humans. Eur J Appl Physiol 78:189–194. doi:10.1007/s004210050406

    Article  CAS  Google Scholar 

  • Katayama K, Sato Y, Morotome Y, Shima N, Ishida K, Mori S, Miyamura M (2001a) Intermittent hypoxia increases ventilation and SaO2 during hypoxic exercise and hypoxic chemosensitivity. J Appl Physiol 90:1431–1440

    PubMed  CAS  Google Scholar 

  • Katayama K, Shima N, Sato Y, Qiu JC, Ishida K, Mori S, Miyamura M (2001b) Effect of intermittent hypoxia on cardiovascular adaptations and response to progressive hypoxia in humans. High Alt Med Biol 2:501–508. doi:10.1089/152702901753397063

    Article  PubMed  CAS  Google Scholar 

  • Katayama K, Sato Y, Shima N, Qiu JC, Ishida K, Mori S, Miyamura M (2002) Enhanced chemosensitivity after intermittent hypoxic exposure does not affect exercise ventilation at sea level. Eur J Appl Physiol 87:187–191. doi:10.1007/s00421-002-0594-4

    Article  PubMed  CAS  Google Scholar 

  • Katayama K, Sato K, Matsuo H, Hotta N, Sun Z, Ishida K, Iwasaki K, Miyamura M (2005) Changes in ventilatory responses to hypercapnia and hypoxia after intermittent hypoxia in humans. Respir Physiol Neurobiol 146:55–65. doi:10.1016/j.resp.2004.11.007

    Article  PubMed  Google Scholar 

  • Katayama K, Sato K, Hotta N, Ishida K, Iwasaki K, Miyamura M (2007) Intermittent hypoxia does not increase exercise ventilation at simulated moderate altitude. Int J Sports Med 28:480–487. doi:10.1055/s-2006-955895

    Article  PubMed  CAS  Google Scholar 

  • Koehle MS, Sheel AW, Milsom WK, McKenzie DC (2007) Two patterns of daily hypoxic exposure and their effects on measures of chemosensitivity in humans. J Appl Physiol 103:1973–1978. doi:10.1152/japplphysiol.00545.2007

    Article  PubMed  Google Scholar 

  • Ling L, Fuller DD, Bach KB, Kinkead R, Olson EB Jr, Mitchell GS (2001) Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci 21:5381–5388

    PubMed  CAS  Google Scholar 

  • Lusina SC, Kennedy PM, Inglis JT, McKenzie DC, Ayas NT, Sheel AW (2006) Long-term intermittent hypoxia increases sympathetic activity and chemosensitivity during acute hypoxia in humans. J Physiol 575:961–970. doi:10.1113/jphysiol.2006.114660

    Article  PubMed  CAS  Google Scholar 

  • Masuyama S, Kimura H, Sugita T, Kuriyama T, Tatsumi K, Kunimoto F, Okita S, Tojima H, Yuguchi Y, Watanabe S, Honda Y (1986) Control of ventilation in extreme-altitude climbers. J Appl Physiol 61:500–506

    PubMed  CAS  Google Scholar 

  • Muza SR (2007) Military applications of hypoxic training for high-altitude operations. Med Sci Sports Exerc 39:1625–1631. doi:10.1249/mss.0b013e3180de49fe

    Article  PubMed  Google Scholar 

  • Nagasaka T, Satake T (1969) Changes of pulmonary and cardiovascular functions in subjects confined intermittently in a low-pressure chamber for 3 consecutive days. Fed Proc 28:1312–1315

    PubMed  CAS  Google Scholar 

  • Nielsen AM, Bisgard GE, Vidruk EH (1988) Carotid chemoreceptor activity during acute and sustained hypoxia in goats. J Appl Physiol 65:1796–1802

    PubMed  CAS  Google Scholar 

  • Read DJC (1967) A clinical method for assessing the ventilatory response to carbon dioxide. Aust Ann Med 16:20–32

    PubMed  CAS  Google Scholar 

  • Read DJC, Leigh J (1967) Blood-brain tissue PCO2 relationships and ventilation during rebreathing. J Appl Physiol 23:53–70

    PubMed  CAS  Google Scholar 

  • Sato M, Severinghaus JW, Powell FL, Xu FD, Spellman JMJ (1992) Augmented hypoxic ventilatory response in men at altitude. J Appl Physiol 73:101–107

    PubMed  CAS  Google Scholar 

  • Sato M, Severinghaus W, Bickler P (1994) Time course of augmentation and depression of hypoxic ventilatory responses at altitude. J Appl Physiol 77:313–316

    PubMed  CAS  Google Scholar 

  • Schoene RB, Lahiri S, Hackett PH, Peters RM Jr, Milledge JS, Pizzo CJ, Sarnquist FH, Boyers SJ, Graber DJ, Maret KH, West JB (1984) Relationship of hypoxic ventilatory response to exercise performance on Mount Everest. J Appl Physiol 55:1478–1483

    Google Scholar 

  • Schoene RB, Roach RC, Hackett PH, Sutton JR, Cymerman A, Houston CS (1990) Operation Everest II: ventilatory adaptation during gradual decompression to extreme altitude. Med Sci Sports Exerc 22:804–810. doi:10.1249/00005768-199012000-00012

    PubMed  CAS  Google Scholar 

  • Smith CA, Dempsey JA, Hornbein TF (2001) Control of breathing at high altitude. In: Hornbein TF, Schoene RB (eds) High altitude. Marcel Dekker, New York, pp 139–173

    Google Scholar 

  • Townsend NE, Gore CJ, Hahn AG, McKenna MJ, Aughey RJ, Clark SA, Kinsman T, Hawley JA, Chow CM (2002) Living high-training low increases hypoxic ventilatory response of well-trained endurance athletes. J Appl Physiol 93:1498–1505

    PubMed  Google Scholar 

  • Vizek M, Pickett CK, Weil JV (1987) Increased carotid body hypoxic sensitivity during acclimatization to hypobaric hypoxia. J Appl Physiol 63:2403–2410

    PubMed  CAS  Google Scholar 

  • Weil JV, Byrne-Quinn E, Sodal IE, Friesen WO, Underhill B, Filley GF, Grover RF (1970) Hypoxic ventilatory drive in normal man. J Clin Invest 49:1061–1072. doi:10.1172/JCI106322

    Article  PubMed  CAS  Google Scholar 

  • White DP, Gleeson K, Pickett CK, Rannels AM, Cymerman A, Weil JV (1987) Altitude acclimatization: influence on periodic breathing and chemoresponsiveness during sleep. J Appl Physiol 63:401–412

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the cooperation of the subjects in this study, and Prof. Y. Kanao, Dr. K. Sato, Dr. N. Hotta, and Mr. H. Matsuo for assistance during the experiment. We also acknowledge the Will Corporation for supplying equipment and technical assistance and Ms. A. Amann for reviewing the English in the manuscript. This study was supported in part by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Science, Sports and Culture (grant no. 20700523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisho Katayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katayama, K., Ishida, K., Iwasaki, Ki. et al. Effect of two durations of short-term intermittent hypoxia on ventilatory chemosensitivity in humans. Eur J Appl Physiol 105, 815–821 (2009). https://doi.org/10.1007/s00421-008-0960-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0960-y

Keywords

Navigation