Skip to main content
Log in

Changes in heart rate recovery after high-intensity training in well-trained cyclists

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Heart rate recovery (HRR) after submaximal exercise improves after training. However, it is unknown if this also occurs in already well-trained cyclists. Therefore, 14 well-trained cyclists (VO2max 60.3 ± 7.2 ml kg−1 min−1; relative peak power output 5.2 ± 0.6 W kg−1) participated in a high-intensity training programme (eight sessions in 4 weeks). Before and after high-intensity training, performance was assessed with a peak power output test including respiratory gas analysis (VO2max) and a 40-km time trial. HRR was measured after every high-intensity training session and 40-km time trial. After the training period peak power output, expressed as W kg−1, improved by 4.7% (P = 0.000010) and 40-km time trial improved by 2.2% (P = 0.000007), whereas there was no change in VO2max (P = 0.066571). Both HRR after the high intensity training sessions (7 ± 6 beats; P = 0.001302) and HRR after the 40-km time trials (6 ± 3 beats; P = 0.023101) improved significantly after the training period. Good relationships were found between improvements in HRR40-km and improvements in peak power output (r = 0.73; P < 0.0001) and 40-km time trial time (r = 0.96; P < 0.0001). In conclusion, HRR is a sensitive marker which tracks changes in training status in already well-trained cyclists and has the potential to have an important role in monitoring and prescribing training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London

    Google Scholar 

  • American College of Sports Medicine (2007) Preparticipation health screening and risk stratification. In: Whaley MH, Brubaker PH, Otto RM (eds) ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins, Baltimore, p 26

    Google Scholar 

  • Baumert M, Brechtel L, Lock J, Hermsdorf M, Wolff R, Baier V, Voss A (2006) Heart rate variability, blood pressure variability, and baroreflex sensitivity in overtrained athletes. Clin J Sports Med 16:412–417. doi:10.1097/01.jsm.0000244610.34594.07

    Article  Google Scholar 

  • Boas EP (1931) The heart rate of boys during and after exhausting exercise. J Clin Invest 10:145–152. doi:10.1172/JCI100335

    Article  PubMed  CAS  Google Scholar 

  • Borresen J, Lambert MI (2007) Changes in heart rate recovery in response to acute changes in training load. Eur J Appl Physiol 101:503–511. doi:10.1007/s00421-007-0516-6

    Article  PubMed  Google Scholar 

  • Borresen J, Lambert MI (2008) Autonomic control of heart rate during and after exercise—measurements and implications for monitoring training status. Sports Med 28:633–646. doi:10.2165/00007256-200838080-00002

    Article  Google Scholar 

  • Buchheit M, Gindre C (2006) Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. Am J Physiol Heart Circ Physiol 291:H451–H458. doi:10.1152/ajpheart.00008.2006

    Article  PubMed  CAS  Google Scholar 

  • Buchheit M, Papelier Y, Laursen PB, Ahmaidi S (2007) Noninvasive assessment of cardiac parasympathetic function: postexercise heart rate recovery or heart rate variability? Am J Physiol Heart Circ Physiol 293:H8–H10. doi:10.1152/ajpheart.00335.2007

    Article  PubMed  CAS  Google Scholar 

  • Buchheit M, Millet GP, Parisy A, Pourchez S, Laursen PB, Ahmaidi S (2008) Supramaximal training and postexercise parasympathetic reactivation in adolescents. Med Sci Sports Exerc 40:362–371

    Article  PubMed  Google Scholar 

  • Bunc V, Heller J, Leso J (1988) Kinetics of heart rate responses to exercise. J Sports Sci 6:39–48

    PubMed  CAS  Google Scholar 

  • Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS (1999) Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 341:1351–1357. doi:10.1056/NEJM199910283411804

    Article  PubMed  CAS  Google Scholar 

  • Davidson RCR, Corbett J, Ansley L (2007) Influence of temperature and protocol on the calibration of the computrainer electromagnetically braked cycling ergometer. J Sports Sci 25:257–258

    Google Scholar 

  • Durnin JVGA, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32:77–97. doi:10.1079/BJN19740060

    Article  PubMed  CAS  Google Scholar 

  • Gnehm P, Reichenbach S, Altpeter E, Widmer H, Hoppeler H (1997) Influence of different racing positions on metabolic cost in elite cyclists. Med Sci Sports Exerc 29:818–823. doi:10.1097/00005768-199706000-00013

    PubMed  CAS  Google Scholar 

  • Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol Occup Physiol 65:79–83. doi:10.1007/BF01466278

    Article  PubMed  CAS  Google Scholar 

  • Hedelin R, Kenttä G, Wiklund U, Bjerle P, Henriksson-Larsen K (2000) Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Med Sci Sports Exerc 32:1480–1484. doi:10.1097/00005768-200008000-00017

    Article  PubMed  CAS  Google Scholar 

  • Heffernan KS, Kelly EE, Collier SR, Fernhall B (2006) Cardiac autonomic modulation during recovery from acute endurance versus resistance exercise. Eur J Cardiovasc Prev Rehabil 13:80–86. doi:10.1097/00149831-200602000-00012

    Article  PubMed  Google Scholar 

  • Jeukendrup A (2002) High-performance cycling. Human Kinetics Publishers, Inc, Champaign

    Google Scholar 

  • Jeukendrup AE, Craig NP, Hawley JA (2000) The bioenergetics of world class cycling. J Sci Med Sport 3:414–433. doi:10.1016/S1440-2440(00)80008-0

    Article  PubMed  CAS  Google Scholar 

  • Kaikkonen P, Rusko H, Martinmaki K (2008) Post-exercise heart rate variability of endurance athletes after different high-intensity exercise interventions. Scand J Med Sci Sports 18:511–519

    Article  PubMed  CAS  Google Scholar 

  • Kannankeril PJ, Le FK, Kadish AH, Goldberger JJ (2004) Parasympathetic effects on heart rate recovery after exercise. J Investig Med 52:394–401. doi:10.2310/6650.2004.00611

    Article  PubMed  Google Scholar 

  • Kenttä G, Hassmen P (1998) Overtraining and recovery. A conceptual model. Sports Med 26:1–16. doi:10.2165/00007256-199826010-00001

    Article  PubMed  Google Scholar 

  • Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP (2007) Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol 101:743–751. doi:10.1007/s00421-007-0552-2

    Article  PubMed  Google Scholar 

  • Kuipers H (1998) Training and overtraining: an introduction. Med Sci Sports Exerc 30:1137–1139. doi:10.1097/00005768-199807000-00018

    Article  PubMed  CAS  Google Scholar 

  • Lambert MI, Borresen J (2006) A theoretical basis of monitoring fatigue: a practical approach for coaches. Int J Sports Sci Coaching 1:371–388. doi:10.1260/174795406779367684

    Article  Google Scholar 

  • Lamberts RP, Lambert MI (2009) Day-to-day variation in heart rate at different levels of submaximal exertion: implications for monitoring training. J Strength Cond Res (in press)

  • Lamberts RP, Lemmink KA, Durandt JJ, Lambert MI (2004) Variation in heart rate during submaximal exercise: implications for monitoring training. J Strength Cond Res 18:641–645. doi :10.1519/1533-4287(2004)18<641:VIHRDS>2.0.CO;2

    Article  PubMed  Google Scholar 

  • Lamberts RP, Swart J, Woolrich RW, Noakes TD, Lambert MI (2008) Measurement error associated with performance testing in well-trained cyclists; application to the precision of monitoring changes in training status. Int Sports Med J (in press)

  • Laursen PB, Jenkins DG (2002) The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32:53–73. doi:10.2165/00007256-200232010-00003

    Article  PubMed  Google Scholar 

  • Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG (2002) Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc 34:1801–1807. doi:10.1097/00005768-200211000-00017

    Article  PubMed  Google Scholar 

  • Lehmann MJ, Lormes W, Opitz-Gress A, Steinacker JM, Netzer N, Foster C, Gastmann U (1997) Training and overtraining: an overview and experimental results in endurance sports. J Sports Med Phys Fitness 37:7–17

    PubMed  CAS  Google Scholar 

  • Lehmann M, Foster C, Dickhuth HH, Gastmann U (1998) Autonomic imbalance hypothesis and overtraining syndrome. Med Sci Sports Exerc 30:1140–1145. doi:10.1097/00005768-199807000-00019

    Article  PubMed  CAS  Google Scholar 

  • Lucia A, Hoyos J, Santalla A, Perez M, Chicharro JL (2002a) Kinetics of VO2 in professional cyclists. Med Sci Sports Exerc 34:320–325. doi:10.1097/00005768-200203000-00021

    Article  PubMed  Google Scholar 

  • Lucia A, Rivero JL, Perez M, Serrano AL, Calbet JA, Santalla A, Chicharro JL (2002b) Determinants of VO2 kinetics at high power outputs during a ramp exercise protocol. Med Sci Sports Exerc 34:326–331. doi:10.1097/00005768-200203000-00021

    Article  PubMed  Google Scholar 

  • Meeusen R, Duclos M, Gleeson M, Rietjens G, Steinacker J, Urhausen A (2006) Prevention, diagnosis and treatment of the overtraining syndrome. Eur J Sport Sci 6:1–14. doi:10.1080/17461390600617717

    Article  Google Scholar 

  • Mujika I, Padilla S (2001) Physiological and performance characteristics of male professional road cyclists. Sports Med 31:479–487. doi:10.2165/00007256-200131070-00003

    Article  PubMed  CAS  Google Scholar 

  • Noakes TD (2008) Testing for maximum oxygen consumption has produced a brainless mode of human exercise performance. Br J Sports Med 42:551–555. doi:10.1136/bjsm.2008.046821

    Article  PubMed  CAS  Google Scholar 

  • Padilla S, Mujika I, Orbananos J, Angulo F (2000) Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc 32:850–856. doi:10.1097/00005768-200004000-00019

    Article  PubMed  CAS  Google Scholar 

  • Ross WD, Marfell-Jones MJ (1991) Kinanthropometry. In: MacDougall JD, Wenger HA, Green HS (eds) Physiological testing of the high performance athlete. Human Kinetics, Champaign, pp 223–308

    Google Scholar 

  • Seiler S, Haugen O, Kuffel E (2007) Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc 39:1366–1373. doi:10.1249/mss.0b013e318060f17d

    Article  PubMed  Google Scholar 

  • Shepley B, MacDougall JD, Cipriano N, Sutton JR, Tarnopolsky MA, Coates G (1992) Physiological effects of tapering in highly trained athletes. J Appl Physiol 72:706–711

    PubMed  CAS  Google Scholar 

  • Shetler K, Marcus R, Froelicher VF, Vora S, Kalisetti D, Prakash M, Myers J, Do D (2001) Heart rate recovery: validation and methodologic issues. J Am Coll Cardiol 38:1980–1987. doi:10.1016/S0735-1097(01)01652-7

    Article  PubMed  CAS  Google Scholar 

  • Short KR, Sedlock DA (1997) Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol 83:153–159

    PubMed  CAS  Google Scholar 

  • Solberg G, Robstad B, Skjønsberg OH, Borchsenius F (2005) Respiratory gas exchange indices for estimating the anaerobic threshold. J Sports Sci Med 4:29–36

    Google Scholar 

  • Stepto NK, Hawley JA, Dennis SC, Hopkins WG (1999) Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc 31:736–741. doi:10.1097/00005768-199905000-00018

    Article  PubMed  CAS  Google Scholar 

  • Sugawara J, Murakami H, Maeda S, Kuno S, Matsuda M (2001) Change in post-exercise vagal reactivation with exercise training and detraining in young men. Eur J Appl Physiol 85:259–263. doi:10.1007/s004210100443

    Article  PubMed  CAS  Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Google Scholar 

  • Yamamoto K, Miyachi M, Saitoh T, Yoshioka A, Onodera S (2001) Effects of endurance training on resting and post-exercise cardiac autonomic control. Med Sci Sports Exerc 33:1496–1502. doi:10.1097/00005768-200109000-00012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all cyclists who participated in this study. This study was funded by the van Ewijck foundation, the Medical Research Council of South Africa, Discovery Health and the University of Cape Town.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Lamberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamberts, R.P., Swart, J., Noakes, T.D. et al. Changes in heart rate recovery after high-intensity training in well-trained cyclists. Eur J Appl Physiol 105, 705–713 (2009). https://doi.org/10.1007/s00421-008-0952-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0952-y

Keywords

Navigation