European Journal of Applied Physiology

, Volume 105, Issue 5, pp 695–704 | Cite as

Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise

  • Grant O. McCaulley
  • Jeffrey M. McBride
  • Prue Cormie
  • Matthew B. Hudson
  • James L. Nuzzo
  • John C. Quindry
  • N. Travis Triplett
Original Article


The purpose of the current study was to determine the acute neuroendocrine response to hypertrophy (H), strength (S), and power (P) type resistance exercise (RE) equated for total volume. Ten male subjects completed three RE protocols and a rest day (R) using a randomized cross-over design. The protocols included (1) H: 4 sets of 10 repetitions in the squat at 75% of 1RM (90 s rest periods); (2) S: 11 sets of three repetitions at 90% of 1RM (5 min rest periods); and (3) P: 8 sets of 6 repetitions of jump squats at 0% of 1RM (3 min rest periods). Total testosterone (T), cortisol (C), and sex hormone binding globulin (SHBG) were determined prior to (PRE), immediately post (IP), 60 min post, 24 h post, and 48 h post exercise bout. Peak force, rate of force development, and muscle activity from the vastus medialis (VM) and biceps femoris (BF) were determined during a maximal isometric squat test. A unique pattern of response was observed in T, C, and SHBG for each RE protocol. The percent change in T, C, and SHBG from PRE to IP was significantly (p ≤ 0.05) greater in comparison to the R condition only after the H protocol. The percent of baseline muscle activity of the VM at IP was significantly greater following the H compared to the S protocol. These data indicate that significant acute increases in hormone concentrations are limited to H type protocols independent of the volume of work competed. In addition, it appears the H protocol also elicits a unique pattern of muscle activity as well. RE protocols of varying intensity and rest periods elicit strikingly different acute neuroendocrine responses which indicate a unique physiological stimulus.


Testosterone Cortisol Force 


  1. Ahtiainen JP, Pakarinen A, Kraemer WJ, Hakkinen K (2003) Acute hormonal and neuromuscular responses and recovery to forced vs. maximum repetitions multiple resistance exercises. Int J Sports Med 24:410–418. doi:10.1055/s-2003-41171 PubMedCrossRefGoogle Scholar
  2. Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2005) Short versus long rest periods between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. J Strength Cond Res 19:572–582. doi:10.1519/15604.1 PubMedCrossRefGoogle Scholar
  3. Babault N, Desbrosses K, Fabre MS, Michaut A, Pousson M (2006) Neuromuscular fatigue development during maximal concentric and isometric knee extensions. J Appl Physiol 100:780–785. doi:10.1152/japplphysiol.00737.2005 PubMedCrossRefGoogle Scholar
  4. Bigland-Richie B (1981) EMG/force relations and fatigue of human voluntary contractions. Exerc Sport Sci Rev 9:75–117. doi:10.1249/00003677-198101000-00002 Google Scholar
  5. Bigland-Ritchie B, Furbush F, Woods JJ (1986) Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol 61:421–429PubMedGoogle Scholar
  6. Bird SP, Tarpenning KM (2004) Influence of circadian time structure on acute hormonal responses to a single bout of heavy resistance exercise in weight trained men. Chronobiol Int 21:131–146. doi:10.1081/CBI-120027987 PubMedCrossRefGoogle Scholar
  7. Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88:50–60. doi:10.1007/s00421-002-0681-6 PubMedCrossRefGoogle Scholar
  8. Chiu L, Fry A, Schilling AB, Johnson B, Weiss E (2004) Neuromuscular fatigue and potentiation following two successive high intensity resistance exercise sessions. Eur J Appl Physiol 92:385–392. doi:10.1007/s00421-004-1144-z PubMedCrossRefGoogle Scholar
  9. Cormie P, McCaulley GO, Triplett NT, McBride JM (2007) Optimal loading for maximal power output during lower-body resistance exercises. Med Sci Sports Exerc 39:340–349. doi:10.1249/ PubMedCrossRefGoogle Scholar
  10. Crewther B, Keogh J, Cronin J, Cook C (2006) Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med 36:215–238. doi:10.2165/00007256-200636030-00004 PubMedCrossRefGoogle Scholar
  11. Deschenes MR, Brewer RE, Bush JA, McCoy RW, Volek JS, Kraemer WJ (2000) Neuromuscular disturbances outlast other symptoms of exercise-induced muscle damage. J Neurosci 174:92–99Google Scholar
  12. Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttgen HG (1994) Effect of acid-base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol 76:821–829PubMedGoogle Scholar
  13. Goto K, Ishii N, Kizuka T, Takamatsu K (2005) The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc 37:955–963. doi:10.1097/00005768-200505001-01246 PubMedCrossRefGoogle Scholar
  14. Gotshalk LA, Loehel CC, Nindl BC, Putukian M, Sebastianelli WJ, Newton RU, Hakkinen K, Kraemer WJ (1997) Hormonal responses of multi-set versus single-set heavy-resistance exercise protocols. Can J Appl Physiol 22:244–255PubMedGoogle Scholar
  15. Hakkinen K (1994) Neuromuscular fatigue in males and females during strenuous heavy resistance loading. Electromyogr Clin Neurophysiol 34:205–214PubMedGoogle Scholar
  16. Hakkinen K (1995) Neuromuscular fatigue and recovery in women at different ages during heavy resistance loading. Electromyogr Clin Neurophysiol 35:403–413PubMedGoogle Scholar
  17. Hakkinen K, Pakarinen A (1993) Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl Physiol 74:882–888PubMedGoogle Scholar
  18. Henneman E, Somjen G, Carpenter DO (1965) Excitability and inhabitability of motoneurons of different sizes. J Neurophysiol 28:599–620PubMedGoogle Scholar
  19. Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361. doi:10.2165/00007256-200535040-00004 PubMedCrossRefGoogle Scholar
  20. Kraemer WJ, Noble BJ, Clark MJ, Culver BW (1987) Physiologic responses to heavy-resistance exercise with very short rest periods. Int J Sports Med 8:247–252. doi:10.1055/s-2008-1025663 PubMedCrossRefGoogle Scholar
  21. Kraemer WJ, Marchitelli L, Scott GE, Harman E, Dziados JE, Mello R, Frykman P, McCurry D, Fleck S (1990) Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 69:1442–1450PubMedGoogle Scholar
  22. Kraemer WJ, Gordon JF, Gordon SE, Harmon EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 78:976–989PubMedGoogle Scholar
  23. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, Fleck SJ, Franklin B, Fry AC, Hoffman JR, Newton RU, Potteiger J, Stone MH, Ratamess NA, Triplett-McBride T (2002) American college of sports medicine position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc 34:364–380. doi:10.1097/00005768-200205001-00389 PubMedCrossRefGoogle Scholar
  24. Linnamo V, Hakkinen K, Komi PV (1998) Neuromuscular fatigue and recovery in maximal compared to explosive strength loading. Eur J Appl Physiol Occup Physiol 77:176–181. doi:10.1007/s004210050317 PubMedCrossRefGoogle Scholar
  25. Linnamo V, Newton RU, Hakkinen K, Komi PV, Davie A, McGuigan M, Triplett-McBride T (2000) Neuromuscular responses to explosive and heavy resistance loading. J Electomyogr Kin 10:417–424. doi:10.1016/S1050-6411(00)00029-8 CrossRefGoogle Scholar
  26. Linnamo V, Pakarinen A, Komi PV, Kraemer WJ, Hakkinen K (2005) Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J Strength Cond Res 19:566–571. doi:10.1519/R-15404.1 PubMedCrossRefGoogle Scholar
  27. Liu Y, Peng CH, Wei SH, Chi JC, Tsai FR, Chen JY (2006) Active leg stiffness and energy stored in the muscles during maximal counter movement jump in the aged. J Electromyogr Kinesiol 16:342–351. doi:10.1016/j.jelekin.2005.08.001 PubMedCrossRefGoogle Scholar
  28. Lu S, Lau CP, Tung YF, Huang SW, Chen YH, Shih HC, Tsai SC, Lu CC, Wang SW, Chen JJ, Chien CH, Wang PS (1997) Lactate and the effects of exercise on testosterone secretion: evidence for the involvement of a cAMP-mediated mechanism. Med Sci Sports Exerc 29:1048–1054. doi:10.1097/00005768-199708000-00010 PubMedGoogle Scholar
  29. Matuszak MA, Weiss L, Ireland T, McKnight M (2003) Effect of rest interval length on repeated 1 repetition maximum back squats. J Strength Cond Res 17:634–637. doi:10.1519/1533-4287(2003)017<;0634:EORILO>;2.0.CO;2PubMedCrossRefGoogle Scholar
  30. Mayer M, Rosen F (1977) Interaction of glucocorticoids and androgens with skeletal muscle. Metabolism 26:937–961. doi:10.1016/0026-0495(77)90013-0 PubMedCrossRefGoogle Scholar
  31. McCall GE, Byrnes WC, Fleck SJ, Dickinson A, Kraemer WJ (1999) Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol 24:96–107PubMedGoogle Scholar
  32. Moore DR, Burgomaster KA, Schofield LM, Gibala MJ, Sale DG, Phillips SM (2004) Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol 92:399–406. doi:10.1007/s00421-004-1072-y PubMedCrossRefGoogle Scholar
  33. Pattersson R, Pearson J, Fisher S (1985) Work-rest periods: their effects on normal physiologic response to isometric and dynamic work. Arch Phys Med Rehabil 66:348–352. doi:10.1016/0003-9993(85)90160-1 CrossRefGoogle Scholar
  34. Pierce JR, Clark BC, Ploutz-Snyder LL, Kanaley JA (2006) Growth hormone and muscle function responses to skeletal muscle ischemia. J Appl Physiol 101:1588–1595. doi:10.1152/japplphysiol.00585.2006 PubMedCrossRefGoogle Scholar
  35. Raastad T, Bjoro T, Hallen J (2000) Hormonal responses to high—and moderate-intensity strength exercise. Eur J Appl Physiol 82:121–128. doi:10.1007/s004210050661 PubMedCrossRefGoogle Scholar
  36. Ratamess NA, Kraemer WJ, Volek JS, Maresh CM, VanHeest JL, Sharman MJ, Rubin MR, French DN, Vescovi JD, Silvestre R, Hatfield DL, Fleck SJ, Deschenes MR (2005) Androgen receptor content following heavy resistance exercise in men. J Steroid Biochem Mol Biol 93:35–42. doi:10.1016/j.jsbmb.2004.10.019 PubMedCrossRefGoogle Scholar
  37. Rubin MR, Kraemer WJ, Maresh CM, Volek JS, Ratamess NA, Vanheest JL, Silvestre R, French DN, Sharman MJ, Judelson DA, Gomez AL, Vescovi JD, Hymer WC (2005) High-affinity growth hormone binding protein and acute heavy resistance exercise. Med Sci Sports Exerc 37:395–403. doi:10.1249/01.MSS.0000155402.93987.C0 PubMedCrossRefGoogle Scholar
  38. Sale DG (1987) Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev 15:95–151. doi:10.1249/00003677-198700150-00008 PubMedCrossRefGoogle Scholar
  39. Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20:S135–S145. doi:10.1249/00005768-198810001-00009 PubMedCrossRefGoogle Scholar
  40. Smilios I, Pilianidis T, Karamouzis M, Tokmakidis SP (2003) Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc 35:644–654. doi:10.1249/01.MSS.0000058366.04460.5F PubMedCrossRefGoogle Scholar
  41. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N (2000) Effects of resistance exercise combined with moderate vascular occlusion on muscular functions in humans. J Appl Physiol 88:2097–2106PubMedGoogle Scholar
  42. Taylor AD, Bronks R, Smith P, Humphries B (1997) Myoelectrical evidence of peripheral muscle fatigue during exercise in severe hypoxia: some references to m: vastus lateralis myosin heavy chain composition. Eur J Appl Physiol 75:151–159. doi:10.1007/s004210050140 CrossRefGoogle Scholar
  43. Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behavior contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513:296–305. doi:10.1111/j.1469-7793.1998.295by.x CrossRefGoogle Scholar
  44. Willardson JM, Burkett LN (2005) A comparison of 3 different rest intervals on the exercise volume completed during a workout. J Strength Cond Res 19:23–26. doi:10.1519/R-13853.1 PubMedCrossRefGoogle Scholar
  45. Willardson JM, Burkett LN (2006a) The effect of rest interval length on bench press performance with heavy vs. light loads. J Strength Cond Res 20:396–399. doi:10.1519/R-17735.1 PubMedCrossRefGoogle Scholar
  46. Willardson JM, Burkett LN (2006b) The effect of rest interval length on the sustainability of squat and bench press repetitions. J Strength Cond Res 20:400–403. doi:10.1519/R-16314.1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Grant O. McCaulley
    • 1
  • Jeffrey M. McBride
    • 1
  • Prue Cormie
    • 1
  • Matthew B. Hudson
    • 1
  • James L. Nuzzo
    • 1
  • John C. Quindry
    • 1
  • N. Travis Triplett
    • 1
  1. 1.Neuromuscular Laboratory, Department of Health Leisure and Exercise ScienceAppalachian State UniversityBooneUSA

Personalised recommendations