Skip to main content

Advertisement

Log in

Hemodynamic responses and linear and non-linear dynamics of cardiovascular autonomic regulation following supramaximal exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine hemodynamic responses and cardiovascular autonomic regulation following supramaximal exercise. Electrocardiographic R–R intervals and beat-to-beat hemodynamics were recorded before and for 10 min after a 30-s Wingate test in 11 males. Spectral analysis of heart rate (HR) and arterial pressure variability, analysis of HR complexity, the sequence technique and the cross-spectral transfer function were used to quantify autonomic regulation and baroreflex sensitivity. After exercise, the high frequency component of HR variability (vagal-related index) was lower than pre-exercise values, whereas the ratio low frequency to high frequency (index of sympathovagal balance) and the low frequency component of blood pressure variability (index of sympathetic vasomotor tone) were greater than baseline (p < 0.05). Post-exercise HR complexity and baroreflex sensitivity were reduced compared to baseline, p < 0.05. Cardiovascular autonomic control requires more than 10 min to fully recover after intense physical exertion of only 30-s in young healthy males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arai Y, Saul JP, Albrecht P, Hartley LH, Lilly LS, Cohen RJ, Colucci WS (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol 256:H132–H141

    PubMed  CAS  Google Scholar 

  • Billman GE (2002) Aerobic exercise conditioning: a nonpharmacological antiarrhythmic intervention. J Appl Physiol 92:446–454

    PubMed  Google Scholar 

  • Brock-Utne JG, Blake GT, Bosenberg AT, Gaffin SL, Humphrey D, Downing JW (1984) An evaluation of the pulse-contour method of measuring cardiac output. S Afr Med J 66:451–453

    PubMed  CAS  Google Scholar 

  • Carter R 3rd, Watenpaugh DE, Wasmund WL, Wasmund SL, Smith ML (1999) Muscle pump and central command during recovery from exercise in humans. J Appl Physiol 87:1463–1469

    PubMed  Google Scholar 

  • Cooke WH, Carter JR (2005) Strength training does not affect vagal-cardiac control or cardiovagal baroreflex sensitivity in young healthy subjects. Eur J Appl Physiol 93:719–725. doi:10.1007/s00421-004-1243-x

    Article  PubMed  Google Scholar 

  • Crisafulli A, Orru V, Melis F, Tocco F, Concu A (2003) Hemodynamics during active and passive recovery from a single bout of supramaximal exercise. Eur J Appl Physiol 89:209–216. doi:10.1007/s00421-003-0796-4

    Article  PubMed  Google Scholar 

  • deBoer RW, Karemaker JM, Strackee J (1987) Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol 253:H680–H689

    PubMed  CAS  Google Scholar 

  • Goulopoulou S, Heffernan KS, Fernhall B, Yates G, Baxter-Jones AD, Unnithan VB (2006) Heart rate variability during recovery from a Wingate test in adolescent males. Med Sci Sports Exerc 38:875–881

    Article  PubMed  Google Scholar 

  • Heffernan KS, Collier SR, Kelly EE, Jae SY, Fernhall B (2007) Arterial stiffness and baroreflex sensitivity following bouts of aerobic and resistance exercise. Int J Sports Med 28:197–203

    Article  PubMed  CAS  Google Scholar 

  • Hussain ST, Smith RE, Medbak S, Wood RF, Whipp BJ (1996) Haemodynamic and metabolic responses of the lower limb after high intensity exercise in humans. Exp Physiol 81:173–187

    PubMed  CAS  Google Scholar 

  • Javorka M, Zila I, Balharek T, Javorka K (2002) Heart rate recovery after exercise: relations to heart rate variability and complexity. Braz J Med Biol Res 35:991–1000

    Article  PubMed  CAS  Google Scholar 

  • Johnson EC, Hudson TL, Greene ER (1990) Left ventricular hemodynamics during exercise recovery. J Appl Physiol 69:104–111

    PubMed  CAS  Google Scholar 

  • Kaikkonen P, Nummela A, Rusko H (2007) Heart rate variability dynamics during early recovery after different endurance exercises. Eur J Appl Physiol 102:79–86

    Article  PubMed  Google Scholar 

  • Kilgour RD, Mansi JA, Williams PA (1995) Cardiodynamic responses during seated and supine recovery from supramaximal exercise. Can J Appl Physiol 20:52–64

    PubMed  CAS  Google Scholar 

  • Kuusela TA, Jartti TT, Tahvanainen KU, Kaila TJ (2002) Nonlinear methods of biosignal analysis in assessing terbutaline-induced heart rate and blood pressure changes. Am J Physiol Heart Circ Physiol 282:H773–H783

    PubMed  CAS  Google Scholar 

  • Lipsitz LA (1995) Age-related changes in the “complexity” of cardiovascular dynamics: a potential marker of vulnerability to disease. Chaos 5:102–109

    Article  PubMed  Google Scholar 

  • Martinmaki K, Rusko H (2008) Time-frequency analysis of heart rate variability during immediate recovery from low and high intensity exercise. Eur J Appl Physiol 102:353–360

    Article  PubMed  Google Scholar 

  • Niemela TH, Kiviniemi AM, Hautala AJ, Salmi JA, Linnamo V, Tulppo MP (2008) Recovery pattern of baroreflex sensitivity after exercise. Med Sci Sports Exerc 40:864–870

    Article  PubMed  Google Scholar 

  • Niewiadomski W, Gasiorowska A, Krauss B, Mroz A, Cybulski G (2007) Suppression of heart rate variability after supramaximal exertion. Clin Physiol Funct Imaging 27:309–319

    Article  PubMed  CAS  Google Scholar 

  • Parlow J, Viale JP, Annat G, Hughson R, Quintin L (1995) Spontaneous cardiac baroreflex in humans. Comparison with drug-induced responses. Hypertension 25:1058–1068

    PubMed  CAS  Google Scholar 

  • Perini R, Veicsteinas A (2003) Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol 90:317–325

    Article  PubMed  Google Scholar 

  • Piepoli M, Coats AJ, Adamopoulos S, Bernardi L, Feng YH, Conway J, Sleight P (1993) Persistent peripheral vasodilation and sympathetic activity in hypotension after maximal exercise. J Appl Physiol 75:1807–1814

    PubMed  CAS  Google Scholar 

  • Pincus SM, Goldberger AL (1994) Physiological time-series analysis: what does regularity quantify? Am J Physiol 266:H1643–H1656

    PubMed  CAS  Google Scholar 

  • Porta A, Guzzetti S, Furlan R, Gnecchi-Ruscone T, Montano N, Malliani A (2007a) Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE Trans Biomed Eng 54:94–106

    Article  PubMed  Google Scholar 

  • Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N (2007b) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol 103:1143–1149

    Article  PubMed  Google Scholar 

  • Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049

    PubMed  CAS  Google Scholar 

  • Rimoldi O, Pierini S, Ferrari A, Cerutti S, Pagani M, Malliani A (1990) Analysis of short-term oscillations of R–R and arterial pressure in conscious dogs. Am J Physiol 258:H967–H976

    PubMed  CAS  Google Scholar 

  • Rudas L, Crossman AA, Morillo CA, Halliwill JR, Tahvanainen KU, Kuusela TA, Eckberg DL (1999) Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine. Am J Physiol 276:H1691–H1698

    PubMed  CAS  Google Scholar 

  • Savin WM, Davidson DM, Haskell WL (1982) Autonomic contribution to heart rate recovery from exercise in humans. J Appl Physiol 53:1572–1575

    PubMed  CAS  Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Google Scholar 

  • Terziotti P, Schena F, Gulli G, Cevese A (2001) Post-exercise recovery of autonomic cardiovascular control: a study by spectrum and cross-spectrum analysis in humans. Eur J Appl Physiol 84:187–194

    Article  PubMed  CAS  Google Scholar 

  • Yeragani VK, Rao R, Jayaraman A, Pohl R, Balon R, Glitz D (2002) Heart rate time series: decreased chaos after intravenous lactate and increased non-linearity after isoproterenol in normal subjects. Psychiatry Res 109:81–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Styliani Goulopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulopoulou, S., Fernhall, B. & Kanaley, J.A. Hemodynamic responses and linear and non-linear dynamics of cardiovascular autonomic regulation following supramaximal exercise. Eur J Appl Physiol 105, 525–531 (2009). https://doi.org/10.1007/s00421-008-0930-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0930-4

Keywords

Navigation