Skip to main content
Log in

A comparison of critical force and electromyographic fatigue threshold for isometric muscle actions of the forearm flexors

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was twofold: (1) to determine if the mathematical model used for estimating the EMGFT during cycle ergometry was applicable to isometric muscle actions; and (2) to compare the mean torque level from the CF test to that of the EMGFT test. The CF was defined as the slope coefficient of the linear relationship between total “isometric work” (W lim in N m s) and time to exhaustion (T lim). The EMGFT was defined as the y-intercept of the isometric torque versus EMG fatigue curve slope coefficient relationship. There was a significant (p < 0.05) mean difference between CF (6.6 ± 3.2 N m) and EMGFT (10.9 ± 4.7 N m). The results of the present study suggested that, during isometric muscle actions of the forearm flexors, fatigue thresholds estimated from the W lim versus T lim relationship (CF) are different from those estimated from electromyographic fatigue curves (EMGFT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Basmajian JV, DeLuca CJ (1985) Muscles alive: their functions revealed by electromyography. Williams & Wilkins, Baltimore

    Google Scholar 

  • Bigland-Ritchie B (1981) EMG/force relations and fatigue of human voluntary contractions. Exerc Sport Sci Rev 9:75–117. doi:10.1249/00003677-198101000-00002

    Article  PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Donovan EF, Roussos CS (1981) Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts. J Appl Physiol 51:1300–1305

    PubMed  CAS  Google Scholar 

  • Bonde-Petersen F, Mork AL, Nielsen E (1975) Local muscle blood flow and sustained contractions of human arm and back muscles. Eur J Appl Physiol Occup Physiol 34:43–50. doi:10.1007/BF00999914

    Article  PubMed  CAS  Google Scholar 

  • Bulbulian R, Jeong JW, Murphy M (1996) Comparison of anaerobic components of the Wingate and Critical Power tests in males and females. Med Sci Sports Exerc 28:1336–1341. doi:10.1097/00005768-199610000-00020

    PubMed  CAS  Google Scholar 

  • Bull AJ, Housh TJ, Johnson GO, Perry SR (2000) Effect of mathematical modeling on the estimation of critical power. Med Sci Sports Exerc 32:526–530. doi:10.1097/00005768-200002000-00040

    Article  PubMed  CAS  Google Scholar 

  • De Luca CJ, Roy AM, Erim Z (1993) Synchronization of motor-unit firings in several human muscles. J Neurophysiol 70:2010–2023

    PubMed  Google Scholar 

  • deVries HA (1968) Method for evaluation of muscle fatigue and endurance from electromyographic fatigue curves. Am J Phys Med 47:125–135

    PubMed  CAS  Google Scholar 

  • deVries HA, Moritani T, Nagata A, Magnussen K (1982) The relation between critical power and neuromuscular fatigue as estimated from electromyographic data. Ergonomics 25:783–791

    Article  PubMed  CAS  Google Scholar 

  • Edwards RG, Lippold OC (1956) The relation between force and integrated electrical activity in fatigued muscle. J Physiol 132:677–681

    PubMed  CAS  Google Scholar 

  • Edwards RH, Hill DK, Jones DA (1975) Heat production and chemical changes during isometric contractions of the human quadriceps muscle. J Physiol 251:303–315

    PubMed  CAS  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495

    Article  PubMed  Google Scholar 

  • Ginn E, MacKinnon L (1989) The equivalence of onset of blood lactate accumulation, critical power, and maximal lactate steady state during kayak ergometry. Abstract Proceedings of the First IOC World Congress on Sport Sciences, Colortek Printing, Colorado Springs: 34

  • Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hagg G (1999) SENIAM 8: European recommendations for rurface ElectroMyoGraphy. Roessingh Research and Development, The Netherlands

    Google Scholar 

  • Housh TJ, deVries HA, Johnson GO, Housh DJ, Evans SA, Stout JR, Evetovich TK, Bradway RM (1995) Electromyographic fatigue thresholds of the superficial muscles of the quadriceps femoris. Eur J Appl Physiol Occup Physiol 71:131–136

    Article  PubMed  CAS  Google Scholar 

  • Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM (2005) Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol 98:120–131

    Article  PubMed  Google Scholar 

  • Knowlton GC, Bennett RL, McClure R (1951) Electromyography of fatigue. Arch Phys Med Rehabil 32:648–652

    PubMed  CAS  Google Scholar 

  • Lynn PA, Bettles ND, Hughes AD, Johnson SW (1978) Influences of electrode geometry on bipolar recordings of the surface electromyogram. Med Biol Eng Comput 16:651–660

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Ito K, Moritani T (1991) The relationship between anaerobic threshold and electromyographic fatigue threshold in college women. Eur J Appl Physiol Occup Physiol 63:1–5

    Article  PubMed  CAS  Google Scholar 

  • Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 8:329–338

    Article  Google Scholar 

  • Moritani T, Muro M, Nagata A (1986) Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol 60:1179–1185

    PubMed  CAS  Google Scholar 

  • Moritani T, Nagata A, deVries HA, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24:339–350

    Article  PubMed  CAS  Google Scholar 

  • Moritani T, Takaishi T, Matsumoto T (1993) Determination of maximal power output at neuromuscular fatigue threshold. J Appl Physiol 74:1729–1734

    PubMed  CAS  Google Scholar 

  • Pavlat DJ, Housh TJ, Johnson GO, Eckerson JM (1995) Electromyographic responses at the neuromuscular fatigue threshold. J Sports Med Phys Fitness 35:31–37

    PubMed  CAS  Google Scholar 

  • Pavlat DJ, Housh TJ, Johnson GO, Schmidt RJ, Eckerson JM (1993) An examination of the electromyographic fatigue threshold test. Eur J Appl Physiol Occup Physiol 67:305–308

    Article  PubMed  CAS  Google Scholar 

  • Pepper ML, Housh TJ, Johnson GO (1992) The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running. Int J Sports Med 13:121–124

    Article  PubMed  CAS  Google Scholar 

  • Petrofsky JS (1979) Frequency and amplitude analysis of the EMG during exercise on the bicycle ergometer. Eur J Appl Physiol Occup Physiol 41:1–15

    Article  PubMed  CAS  Google Scholar 

  • Petrofsky JS, Burse HL, Lind AR (1981) The effect of deep muscle temperature on the cardiovascular responses of man to static effort. Eur J Appl Physiol Occup Physiol 47:7–16

    Article  PubMed  CAS  Google Scholar 

  • Petrofsky JS, Lind AR (1980) The influence of temperature on the amplitude and frequency components of the EMG during brief and sustained isometric contractions. Eur J Appl Physiol Occup Physiol 44:189–200

    Article  PubMed  CAS  Google Scholar 

  • Wakayoshi K, Ikuta K, Yoshida T, Udo M, Moritani T, Mutoh Y, Miyashita M (1992) Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur J Appl Physiol Occup Physiol 64:153–157

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Russell Hendrix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendrix, C.R., Housh, T.J., Johnson, G.O. et al. A comparison of critical force and electromyographic fatigue threshold for isometric muscle actions of the forearm flexors. Eur J Appl Physiol 105, 333–342 (2009). https://doi.org/10.1007/s00421-008-0895-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0895-3

Keywords

Navigation