Skip to main content

Advertisement

Log in

An ultrasound investigation into the morphology of the human abdominal wall uncovers complex deformation patterns during contraction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The abdominal wall components, specifically muscle and connective tissue, must meet and accommodate a wide range of force demands for torso movement, spine stabilization, and respiration. It has a composite laminate nature that may lend itself to facilitating the required tissue responses. The purpose of this exploratory study was to examine the deformations of the abdominal wall connective tissues, with a special focus on both the internal oblique aponeurosis and the tendinous intersections of the rectus abdominis, using ultrasound imaging, during relatively simple contractions of the abdominal musculature. There were two main findings of this study: (1) deformations occurred in nearly 50% of contractions that would be characterized by a simultaneous expansion in multiple planes; (2) the laterally generated forces of the oblique and transverse muscles transfer a great deal of force across the rectus abdominis muscle and sheath, leading to a lateral movement of the rectus muscle during abdominal contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Askar OM (1977) Surgical anatomy of the aponeurotic expansions of the anterior abdominal wall. Ann R Coll Surg Engl 59:313–321

    PubMed  CAS  Google Scholar 

  • Axer H, von Keyserlingk DG, Prescher A (2001) Collagen fibers in linea alba and rectus sheaths: I. general scheme and morphological aspects. J Surg Res 96:127–134. doi:10.1006/jsre.2000.6070

    Article  PubMed  CAS  Google Scholar 

  • Bendavid R, Howarth D (2000) Transversalis fascia rediscovered. Surg Anat Embryol 80:25–33

    CAS  Google Scholar 

  • Bojsen-Moller J, Magnusson SP, Raundahl Rasmussen L, Kjaer M, Aagaard P (2005) Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol 99:986–994. doi:10.1152/japplphysiol.01305.2004

    Article  PubMed  Google Scholar 

  • Brown SHM, McGill SM (2008a) Transmission of muscularly generated force and stiffness between layers of the rat abdominal wall. Spine (in press)

  • Brown SHM, McGill SM (2008b) How the inherent stiffness of the in vivo human trunk varies with changing magnitudes of muscular activation.  Clin Biomech 23:15–22

    Article  Google Scholar 

  • Brown SHM, McGill SM (2008c) Co-activation alters the linear versus non-linear impression of the EMG-torque relationship of trunk muscles. J Biomech 41:491–497. doi:10.1016/j.jbiomech.2007.10.015

    Article  PubMed  Google Scholar 

  • Campbell EJM, Green JH (1953) The variations in intra-abdominal pressure and the activity of the abdominal muscles during breathing; a study in man. J Physiol 122:282–290

    PubMed  CAS  Google Scholar 

  • Cholewicki J, McGill SM (1996) Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon) 11:1–15. doi:10.1016/0268-0033(95)00035-6

    Article  Google Scholar 

  • Cholewicki J, Ivancic PC, Radebold A (2002) Can increased intra-abdominal pressure in humans be decoupled from trunk muscle co-contraction during steady state isometric exercise. Eur J Appl Physiol 87:127–133. doi:10.1007/s00421-002-0598-0

    Article  PubMed  Google Scholar 

  • Cresswell AG (1993) Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man. Eur J Appl Physiol 66:315–320. doi:10.1007/BF00237775

    Article  CAS  Google Scholar 

  • Granata KP, Marras WS (2000) Cost-benefit of muscle cocontraction in protecting against spinal instability. Spine 25:1398–1404. doi:10.1097/00007632-200006010-00012

    Article  PubMed  CAS  Google Scholar 

  • Hides J, Wilson S, Stanton W, McMahon S, Keto H, McMahon K et al (2006) An MRI investigation into the function of the transversus abdominis muscle during “drawing-in” of the abdominal wall. Spine 31:E175–E178. doi:10.1097/01.brs.0000202740.86338.df

    Article  PubMed  Google Scholar 

  • Hodges PW, Pengel LHM, Herbert RD, Gandevia SC (2003) Measurement of muscle contraction with ultrasound imaging. Muscle Nerve 27:682–692. doi:10.1002/mus.10375

    Article  PubMed  CAS  Google Scholar 

  • Hwang W, Carvalho JC, Tarlovsky I, Boriek AM (2005a) Passive mechanics of canine abdominal muscles. J Appl Physiol 98:1829–1835. doi:10.1152/japplphysiol.00910.2003

    Article  PubMed  Google Scholar 

  • Hwang W, Kelly NG, Boriek AM (2005b) Passive mechanics of muscle tendinous junction of canine diaphragm. J Appl Physiol 98:328–1333

    Google Scholar 

  • Ishikawa M, Niemela E, Komi PV (2005) Interaction between fascicle and tendinous tissues is short-contact stratch-shortening cycle exercise with varying eccentric intensities. J Appl Physiol 99:217–223. doi:10.1152/japplphysiol.01352.2004

    Article  PubMed  CAS  Google Scholar 

  • Jeronimidis G, Vincent JFV (1984) Composite materials. In: Hukins DWL (ed) Connective tissue matrix. The MacMillan Press Ltd, London

    Google Scholar 

  • Junge K, Klinge U, Prescher A, Giboni P, Niewiera M, Schumpelick V (2001) Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5:113–118. doi:10.1007/s100290100019

    Article  PubMed  CAS  Google Scholar 

  • Lees C, Vincent JFV, Hillerton JE (1991) Poisson’s ratio in skin. Biomed Mater Eng 1:19–23

    PubMed  CAS  Google Scholar 

  • L’Italien GJ, Chandrasekar NR, Lamuraglia GM, Pevec WC, Dhara S, Warnock DF et al (1994) Biaxial elastic properties of rat arteries in vivo: influence of vascular wall cells on anisotropy. Am J Physiol 267:H574–H579

    PubMed  CAS  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2006) Use of ultrasound to make noninvasive in vivo measurement of continuous changes in human muscle contractile length. J Appl Physiol 100:1311–1323. doi:10.1152/japplphysiol.01229.2005

    Article  PubMed  Google Scholar 

  • Maganaris CN, Paul JP (2002) Tensile properties of the in vivo human gastrocnemius tendon. J Biomech 35:1639–1646. doi:10.1016/S0021-9290(02)00240-3

    Article  PubMed  Google Scholar 

  • Marras WS, Sommerich CM (1991) A three-dimensional motion model of loads on the lumbar spine: 1. Model structure. Hum Factors 33:123–137

    PubMed  CAS  Google Scholar 

  • McGill SM (1991) Kinetic potential of the lumbar trunk musculature about three orthogonal orthopaedic axes in extreme postures. Spine 16:809–825. doi:10.1097/00007632-199107000-00021

    Article  PubMed  CAS  Google Scholar 

  • McGill SM (2002) Low back disorders: evidence based prevention and rehabilitation. Human Kinetics, Champaign

    Google Scholar 

  • McGill SM, Juker D, Kropf P (1996) Appropriately place surface EMG electrodes reflect deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the lumbar spine. J Biomech 29:1503–1507. doi:10.1016/0021-9290(96)84547-7

    Article  PubMed  CAS  Google Scholar 

  • McGill SM, Norman RW (1986) Partitioning the L4–L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine 11:666–678. doi:10.1097/00007632-198609000-00004

    Article  PubMed  CAS  Google Scholar 

  • Misuri G, Colagrande S, Gorini M, Iandelli I, Mancini M, Duranti R et al (1997) In vivo ultrasound assessment of respiratory function of abdominal muscles in normal subjects. Eur Respir J 10:2861–2867. doi:10.1183/09031936.97.10122861

    Article  PubMed  CAS  Google Scholar 

  • Monkhouse WS, Khalique A (1986) Variations in the composition of the human rectus sheath: a study of the anterior abdominal wall. J Anat 145:61–66

    PubMed  CAS  Google Scholar 

  • Nilsson T (1982a) Biomechanical studies of the rabbit abdominal wall. Part 1—the mechanical properties of specimens from different anatomical positions. J Biomech 15:123–129. doi:10.1016/0021-9290(82)90044-6

    Article  PubMed  CAS  Google Scholar 

  • Nilsson T (1982b) Biomechanical studies of rabbit abdominal wall. Part 2—the mechanical properties of specimens in relation to length, width, and fibre orientation. J Biomech 15:131–135. doi:10.1016/0021-9290(82)90045-8

    Article  PubMed  CAS  Google Scholar 

  • Rath AM, Zhang J, Chevrel JP (1997) The sheath of the rectus abdominis muscle: an anatomical and biomechanical study. Hernia 1:139–142. doi:10.1007/BF02426420

    Article  Google Scholar 

  • Rizk NN (1980) A new description of the anterior abdominal wall in man and mammals. J Anat 131:373–385

    PubMed  CAS  Google Scholar 

  • Tsai SW, Hahn HT (1980) Introduction to composite materials. Technomic Publishing Co., Westport

    Google Scholar 

  • Viidik A (1973) Functional properties of collagenous tissues. In: Hall DA, Jackson DS (eds) International review of connective tissue research, vol 6. Academic Press Inc., New York

    Google Scholar 

  • Urquhart DM, Barker PJ, Hodges PW, Story IH, Briggs CA (2005) Regional morphology of the transversus abdominis and obliquus internus and externus abdominis muscles. Clin Biomech (Bristol, Avon) 20:233–241. doi:10.1016/j.clinbiomech.2004.11.007

    Article  Google Scholar 

  • Vera- Garcia FJ, Brown SHM, Gray JR, McGill SM (2006) Effects of different levels of torso coactivation on trunk muscular and kinematic responses to posteriorly applied sudden loads. Clin Biomech 21:443–455

    Article  Google Scholar 

  • Yeh H-L, Yeh H-Y, Zhang R (1999) A study of negative poisson’s ratio in randomly oriented quasi-isotropic composite laminates. J Compos Mater 33:1843–1857

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Danielle Greaves for initial assistance with the ultrasound technology, and Diane Gregory and Chad Gooyers for their help with data collection. Financial assistance was provided by the Natural Sciences and Engineering Research Council (NSERC), Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. M. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, S.H.M., McGill, S.M. An ultrasound investigation into the morphology of the human abdominal wall uncovers complex deformation patterns during contraction. Eur J Appl Physiol 104, 1021–1030 (2008). https://doi.org/10.1007/s00421-008-0858-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0858-8

Keywords

Navigation