Cortical activity of skilled performance in a complex sports related motor task

  • Jochen Baumeister
  • Kirsten Reinecke
  • Heinz Liesen
  • Michael Weiss
Original Article

Abstract

A skilled player in goal-directed sports performance has the ability to process internal and external information in an effective manner and decide which pieces of information are important and which are irrelevant. Focused attention and somatosensory information processing play a crucial role in this process. Electroencephalographic (EEG) recordings are able to demonstrate cortical changes in conjunction with this concept and were examined during a golf putting performance in an expert-novice paradigm. The success in putting (score) and performance-related cortical activity were recorded with an EEG during a 5 × 4 min putting series. Subjects were asked to putt balls for four min at their own pace. The EEG data was divided into different frequencies: Theta (4.75–6.75 Hz), Alpha-1 (7–9.5 Hz), Alpha-2 (9.75–12.5 Hz) and Beta-1 (12.75–18.5 Hz) and performance related power values were calculated. Statistical analysis shows significant better performance in the expert golfers (P < 0.001). This was associated with higher fronto-midline Theta power (P < 0.05) and higher parietal Alpha-2 power values (P < 0.05) compared to the novices in golf putting. Frontal Theta and parietal Alpha-2 spectral power in the ongoing EEG demonstrate differences due to skill level. Furthermore the findings suggest that with increasing skill level, golfers have developed task solving strategies including focussed attention and an economy in parietal sensory information processing which lead to more successful performance. In a theoretical framework both cortical parameters may play a role in the concept of the working memory.

Keywords

EEG Skill level Working memory Attention Information processing Golf 

References

  1. Abernathy B (2001) Attention. In: Singer RN, Hausenblas HA, Janelle CA (eds) Handbook of sports psychology. Wiley and Sons, NYGoogle Scholar
  2. Babiloni C, Del Percio C, Iacoboni M, Infarinato F, Lizio R, Marzano N, Crespi G, Dassù F, Pirritano M, Gallamini M, Eusebi F (2008) Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms. J Physiol 586:131–139. doi:10.1113/jphysiol.2007.141630 PubMedCrossRefGoogle Scholar
  3. Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4(10):829–839. doi:10.1038/nrn1201 PubMedCrossRefGoogle Scholar
  4. Baumeister J, Reinecke K, Weiss M (2007) Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: an EEG study. Scand J Med Sci Sport (epub Dec 7), doi:10.1111./j.1600-0838.207.0072.x
  5. Crews DJ, Landers DM (1993) Electroencephalographic measures of attentional patterns prior to the golf putt. Med Sci Sport Exerc 25(1):116–126. doi:10.1249/00005768-199301000-00016 CrossRefGoogle Scholar
  6. Dolce G, Waldeier H (1974) Spectral and multivariate analysis of EEG changes during mental activity in man. Electroencephalogr Clin Neurophysiol 36(6):577–584. doi:10.1016/0013-4694(74)90224-7 PubMedGoogle Scholar
  7. Fournier LR, Wilson GF, Swain CR (1999) Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: manipulations of task difficulty and training. Int J Psychophysiol 31(2):129–145. doi:10.1016/S0167-8760(98)00049-X PubMedCrossRefGoogle Scholar
  8. Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebr Cortex 7(4):374–385. doi:10.1093/cercor/7.4.374 CrossRefGoogle Scholar
  9. Grunwald M, Weiss T, Krause W, Beyer L, Rost R, Gutberlet I, Gertz HJ (2001) Theta power in the EEG of humans during ongoing processing in a haptic object recognition task. Brain Res Cogn Brain Res 11(1):33–37. doi:10.1016/S0926-6410(00)00061-6 PubMedCrossRefGoogle Scholar
  10. Hatfield BD, Häufler AJ, Hung T, Spalding TW (2004) Electroencephalographic studies of skilled psychomotor performance. J Clin Neurophysiol 21(3):144–156. doi:10.1097/00004691-200405000-00003 PubMedCrossRefGoogle Scholar
  11. Häufler AJ, Spalding TW, Santa Maria DL, Hatfield BD (2000) Neuro-cognitive activity during a self-paced visuospatial task: comparative EEG profiles in marksmen and novice shooters. Biol Psychol 53(2–3):131–160. doi:10.1016/S0301-0511(00)00047-8 PubMedCrossRefGoogle Scholar
  12. Jasper HH (1958) The ten twenty electrode system of the international Federation. Electroencephal Clin Neurophys 10:371–375Google Scholar
  13. Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci 95(3):861–868. doi:10.1073/pnas.95.3.861 PubMedCrossRefGoogle Scholar
  14. Lehmann D (1987) Principles of spatial analysis. In: Gevins AS, Remond A (eds) Handbook of electroencephalography and clinical neurophysiology. Rev series, vol 1. Methods of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam, pp 309–354Google Scholar
  15. Laux L, Glanzmann P, Schaffner P, Spielberger C (1981) Das State-Trait-Angstinventar. Beltz Test GmbH, WeinheimGoogle Scholar
  16. Luks TL, Simpson GV, Feiwell RJ, Miller WL (2002) Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set. Neuroimage 17(2):792–802. doi:10.1016/S1053-8119(02)91210-3 PubMedCrossRefGoogle Scholar
  17. McCormack HM, Horne DJ, Sheather S (1988) Clinical applications of visual analogue scales: a critical review. Psychol Med 18:1007–1019PubMedCrossRefGoogle Scholar
  18. Niedermeyer E, Lopes da Silva F (2005) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott, Williams and Wilkins, PhiladelphiaGoogle Scholar
  19. Petru R, Wittmann M, Nowak D, Birkholz B, Angerer P (2005) Effects of working permanent night shifts and two shifts on cognitive and psychomotor performance. Int Arch Occup Environ Health 78:109–116. doi:10.1007/s00420-004-0585-3 PubMedCrossRefGoogle Scholar
  20. Pivik RT, Brouhton RJ, Coppola R, Davidson RJ, Fox N, Nuwer MR (1993) Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophys 30(6):547–558. doi:10.1111/j.1469-8986.1993.tb02081.x CrossRefGoogle Scholar
  21. Salazar W, Landers DM, Petruzzello SJ, Han M, Crews DJ, Kubitz KA (1990) Hemispheric asymmetry, cardiac response, and performance in elite archers. Res Q Exerc Sport 61(4):351–359PubMedGoogle Scholar
  22. Sauseng P, Klimesch W, Schabus M, Doppelmayr M (2005) Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol 57(2):97–103. doi:10.1016/j.ijpsycho.2005.03.018 PubMedCrossRefGoogle Scholar
  23. Schober F, Schellenberg R, Dimpfel W (1995) Reflection of Mental Exercise in the Dynamic Quantitative Topographical EEG. Neuropsychobiology 31:98–112. doi:10.1159/000119179 PubMedCrossRefGoogle Scholar
  24. Slobounov SM, Fukada K, Simon R, Rearick M, Ray W (2000) Neurophysiological and behavioral indices of time pressure effects on visuomotor task performance. Brain Res Cogn Brain Res 9(3):287–298. doi:10.1016/S0926-6410(00)00009-4 PubMedCrossRefGoogle Scholar
  25. Smith ME, McEvoy LK, Gevins A (1999) Neurophysiological indices of strategy development and skill acquisition. Brain Res Cogn Brain Res 7(3):389–404. doi:10.1016/S0926-6410(98)00043-3 PubMedCrossRefGoogle Scholar
  26. Wrisberg CA (2001) Levels of performance skill–from beginners to experts. In: Singer RN, Hausenblas HA, Janelle CA (eds) Handbook of sports psychology. Wiley and Sons, NYGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jochen Baumeister
    • 1
  • Kirsten Reinecke
    • 1
  • Heinz Liesen
    • 1
  • Michael Weiss
    • 1
  1. 1.Department Exercise and HealthUniversity of Paderborn Institute of Sport MedicinePaderbornGermany

Personalised recommendations