Skip to main content
Log in

Effects of stretching velocity on passive resistance developed by the knee musculo-articular complex: contributions of frictional and viscoelastic behaviours

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

It is commonly accepted that the passive musculo-articular complex (MAC) displays a viscoelastic behavior. However, the viscosity of the MAC is still not well understood when considering the relationship between the passive resistance offered by the MAC and the stretching velocity. Therefore, in order to obtain a better knowledge of the mechanical behavior of the passive MAC, nine subjects performed passive knee extension/flexion cycles with the hip angle set at 60° on a Biodex® dynamometer at 5°, 30°, 60°, 90° and 120° s−1 in a randomized order to 80% of their maximal range of motion. Results show significant (P < 0.001) increases with the stretching velocity for the passive torque (between +17.6 and +20.8% depending on the considered knee angle), the potential elastic energy stored during the loading (E: +22.7%), and the dissipation coefficient (DC: +22.8%). These results suggest that the role of viscosity in the MAC’s mechanical behavior is limited. A linear model was well-fitted on torque-velocity (0.93 < R 2 < 0.98), E-velocity (R 2 = 0.93) and DC-velocity (R 2 = 0.99) relationships. The linear relationship between DC and velocity indicates that the DC does not tend towards zero for the slowest velocities and that the dissipative properties of the MAC could be modeled by combining linear viscosity and friction. The present study would allow the implementation of a rheological model to simulate the behavior of the passive MAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Trolle M, Bangsbo J, Klausen K (1995) Isokinetic hamstring/quadriceps strength ratio: influence from joint angular velocity, gravity correction and contraction mode. Acta Physiol Scand 154:421–427

    Article  PubMed  CAS  Google Scholar 

  • Amankwah K, Triolo RJ, Kirsch R (2004) Effects of spinal cord injury on lower-limb passive joint moments revealed througth a nonlinear viscoelastic model. J Rehabil Res Dev 41:15–32

    Article  PubMed  Google Scholar 

  • Bressel E, McNair PJ (2001) Biomechanical behavior of the plantar flexor muscle-tendon unit after an Achilles tendon rupture. Am J Sports Med 29:321–326

    PubMed  CAS  Google Scholar 

  • Bressel E, Larsen BT, McNair PJ, Cronin J (2004) Ankle joint proprioception and passive mechanical properties of the calf muscles after an Achilles tendon rupture: a comparison with matched controls. Clin Biomech (Bristol, Avon) 19:284–291

    Article  Google Scholar 

  • Dumas R, Aissaoui R, Mitton D, Skalli W, de Guise JA (2005) Personalized body segment parameters from biplanar low-dose radiography. IEEE Trans Biomed Eng 52:1756–1763

    Article  PubMed  Google Scholar 

  • Esteki A, Mansour JM (1996) An experimentally based nonlinear viscoelastic model of passive joint moment. J Biomech 29:443–450

    Article  PubMed  CAS  Google Scholar 

  • Fung YC (1983) Biomechanics. Mechanical properties of living tissues. Springer, Berlin

  • Gajdosik RL (2001) Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech 16:87–101

    Article  CAS  Google Scholar 

  • Gajdosik RL, Vander Linden DW, McNair PJ, Riggin TJ, Albertson JS, Mattick DJ, Wegley JC (2004) Slow passive stretch and release characteristics of the calf muscles of older women with limited dorsiflexion range of motion. Clin Biomech (Bristol, Avon) 19:398–406

    Article  Google Scholar 

  • Gajdosik RL, Vander Linden DW, McNair PJ, Riggin TJ, Albertson JS, Mattick DJ, Wegley JC (2005) Viscoelastic properties of short calf muscle-tendon units of older women: effects of slow and fast passive dorsiflexion stretches in vivo. Eur J Appl Physiol 95:131–139

    Article  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374

    Article  PubMed  CAS  Google Scholar 

  • Hufschmidt A, Mauritz KH (1985) Chronic transformation of muscle in spasticity: a peripheral contribution to increased tone. J Neurol Neurosurg Psychiatry 48:676–685

    PubMed  CAS  Google Scholar 

  • Lamontagne A, Malouin F, Richards CL, Dumas F (1997) Impaired viscoelastic behavior of spastic plantarflexors during passive stretch at different velocities. Clin Biomech 12:508–515

    Article  Google Scholar 

  • Magnusson SP (1998) Passive properties of human skeletal muscle during stretch maneuvers. A review. Scand J Med Sci Sports 8:65–77

    Article  PubMed  CAS  Google Scholar 

  • Magnusson SP, Simonsen EB, Aagaard P, Gleim GW, McHugh MP, Kjaer M (1995) Viscoelastic response to repeated static stretching in the human hamstring muscle. Scand J Med Sci Sports 5:342–347

    Article  PubMed  CAS  Google Scholar 

  • Magnusson SP, Simonsen EB, Aagaard P, Kjaer M (1996a) Biomechanical responses to repeated stretches in human hamstring muscle in vivo. Am J Sports Med 24:622–628

    Article  PubMed  CAS  Google Scholar 

  • Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M (1996b) A mechanism for altered flexibility in human skeletal muscle. J Physiol 497(Pt 1):291–298

    PubMed  CAS  Google Scholar 

  • Magnusson SP, Aagard P, Simonsen E, Bojsen-Moller F (1998) A biomechanical evaluation of cyclic and static stretch in human skeletal muscle. Int J Sports Med 19:310–316

    Article  PubMed  CAS  Google Scholar 

  • Magnusson SP, Aagaard P, Larsson B, Kjaer M (2000a) Passive energy absorption by human muscle-tendon unit is unaffected by increase in intramuscular temperature. J Appl Physiol 88:1215–1220

    PubMed  CAS  Google Scholar 

  • Magnusson SP, Aagaard P, Nielson JJ (2000b) Passive energy return after repeated stretches of the hamstring muscle-tendon unit. Med Sci Sports Exerc 32:1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Mandel J (1969) Aperçu sur les principaux comportements rhélogiques. In: Persoz B (ed) La rhéololgie. Masson & Cie, Paris, pp 1–17

    Google Scholar 

  • McFaull SR, Lamontagne A (1998) In vivo measurement of the passive viscoelastic properties of the human knee joint. Hum Mov Sci 17:139–165

    Article  Google Scholar 

  • McNair PJ, Portero P (2005) Using isokinetic dynamometers for measurements associated with tissue extensibility. Isokinet Exerc Sci 13:53–56

    Google Scholar 

  • McNair PJ, Dombroski EW, Hewson DJ, Stanley SN (2001) Stretching at the ankle joint: viscoelastic responses to holds and continuous passive motion. Med Sci Sports Exerc 33:354–358

    Article  PubMed  CAS  Google Scholar 

  • McNair PJ, Hewson DJ, Dombroski E, Stanley SN (2002) Stiffness and passive peak force changes at the ankle joint: the effect of different joint angular velocities. Clin Biomech (Bristol, Avon) 17:536–540

    Article  Google Scholar 

  • Nordez A, Cornu C, McNair P (2006) Acute effects of static stretching on passive stiffness of the hamstring muscles calculated using different mathematical models. Clin Biomech 21:755–760

    Article  Google Scholar 

  • Nordez A, Casari P, Cornu C (2008a) Accuracy of Biodex system 3 pro isokinetic dynamometer in passive mode. Med Eng Phys

  • Nordez A, McNair PJ, Casari P, Cornu C (2008b) Acute changes in hamstrings musculo-articular dissipative properties induced by cyclic and static stretching. Int J Sports Med

  • Persoz B (1960) Introduction à l’étude de la rhéologie. Dunod, Paris, France

    Google Scholar 

  • Rabita G, Dupont L, Thevenon A, Lensel-Corbeil G, Pérot C, Vanvelcenaher J (2005) Quantitative assessement of the velocity-dependent increase in resistance to passive stretch in spastic platarflexors. Clin Biomech 20:745–753

    Article  Google Scholar 

  • Reid DA, McNair PJ (2004) Passive force, angle, and stiffness changes after stretching of hamstring muscles. Med Sci Sports Exerc 36:1944–1948

    Article  PubMed  Google Scholar 

  • Riemann BL, DeMont RG, Ryu K, Lephart SM (2001) The effects of sex, joint angle, and the gastrocnemius muscle on passive ankle joint complex stiffness. J Athl Train 36:369–375

    PubMed  Google Scholar 

  • Singer BJ, Dunne JW, Singer KP, Allison GT (2003) Velocity dependent passive platarflexor resistive torque in patients with acquired brain injury. Clin Biomech 18:157–165

    Article  CAS  Google Scholar 

  • Taylor CD, Dalton JD, Seaber AV, Garrett WE (1990) Viscoelastic properties of muscle-tendon units. The biomechanical effetcts of stretching. Am J Sports Med 18:300–309

    Article  PubMed  CAS  Google Scholar 

  • Zatsiorski V (1998) Kinematics of human motion. Human Kinetics, Champaign

    Google Scholar 

Download references

Acknowledgments

The authors thank Jacques Guilbaud for correcting the English and Michel Roche for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cornu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordez, A., Casari, P. & Cornu, C. Effects of stretching velocity on passive resistance developed by the knee musculo-articular complex: contributions of frictional and viscoelastic behaviours. Eur J Appl Physiol 103, 243–250 (2008). https://doi.org/10.1007/s00421-008-0695-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0695-9

Keywords

Navigation