Skip to main content
Log in

Neuromuscular and circulatory adaptation during combined arm and leg exercise with different maximal work loads

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Cardiopulmonary kinetics and electromyographic activity (EMG) during exhausting exercise were measured in 8 males performing three maximal combined arm + leg exercises (cA+L). These exercises were performed at different rates of work (mean ± SD; 373 ± 48, 429 ± 55 and 521 ± 102 W) leading to different average exercise work times in all tests and subjects. \({\dot{\hbox{V}}\hbox{O}_{2}}\) reached a plateau versus work rate in every maximal cA+L exercise (range 6 min 33 s to 3 min 13 s). The three different exercise protocols gave a maximal oxygen consumption \(({\dot{\hbox{V}}\hbox{O}_{2{\rm MAX}}})\) of 4.67 ± 0.57, 4.58 ± 0.52 and 4.66 ± 0.53 l min−1 (P = 0.081), and a maximal heart rate (HRmax) of 190 ± 6, 189 ± 4 and 189 ± 6 beats min−1 (P = 0.673), respectively. Root mean square EMG (EMGRMS) of the vastus lateralis and the triceps brachii muscles increased with increasing rate of work and time in all three cA+L protocols. The study demonstrates that despite different maximal rates of work, leading to different times to exhaustion, the circulatory adaptation to maximal exercise was almost identical in all three protocols that led to a \({\dot{\hbox{V}}\hbox{O}_{2}}\) plateau. The EMGRMS data showed increased muscle recruitment with increasing work rate, even though the HRmax and \({\dot{\hbox{V}}\hbox{O}_{2{\rm MAX}}}\) was the same in all three cA+L protocols. In conclusion, these findings do not support the theory of the existence of a central governor (CG) that regulates circulation and neuronal output of skeletal muscles during maximal exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Åstrand PO, Saltin B (1961) Maximal oxygen uptake and heart rate in various types of muscular activity. J Appl Physiol 16:977–981

    PubMed  Google Scholar 

  • Andersen P, Saltin B (1985) Maximal perfusion of skeletal muscle in man. J Physiol (Lond) 366:233–249

    CAS  Google Scholar 

  • Astorino TA, Willey J, Kinnahan J, Larsson SM, Welch H, Dalleck LC (2005) Elucidating determinants of the plateau in oxygen consumption at VO2max. Br J Sports Med 39:655–660

    Article  PubMed  CAS  Google Scholar 

  • Bergh U, Kanstrup IL, Ekblom B (1976) Maximal oxygen uptake during exercise with various combinations of arm and leg work. J Appl Physiol 41:191–196

    PubMed  CAS  Google Scholar 

  • Bergh U, Ekblom B, Åstrand PO (2000) Maximal oxygen uptake "classical" versus "contemporary" viewpoints. Med Sci Sports Exerc 32:85–88

    Article  PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OC, Smith S, Woods JJ (1983) Changes in motoneurone firing rates during sustained maximal voluntary contractions. J Physiol (Lond) 340:335–346

    CAS  Google Scholar 

  • Borg G, Linderholm H (1967) Perceived exertion and pulse rate during graded exercise in various age groups. Acta Med Scand 472:194–206

    Google Scholar 

  • Brink-Elfegoun T, Kaijser L, Gustafsson T, Ekblom B (2007) Maximal oxygen uptake is not limited by a central nervous system governor. J Appl Physiol 102:781–786

    Article  PubMed  CAS  Google Scholar 

  • di Prampero PE (2003) Factors limiting maximal performance in humans. Eur J Appl Physiol 90:420–429

    Article  PubMed  Google Scholar 

  • di Prampero PE, Capelli C, Ferretti G (2005) Comments on point: counterpoint "Positive effects of intermittent hypoxia (live high:train low) on exercise performance are/are not mediated primarily by augmented red cell volume". J Appl Physiol 99:2453–2462

    Article  PubMed  Google Scholar 

  • Doherty M, Nobbs L, Noakes TD (2003) Low frequency of the "plateau phenomenon" during maximal exercise in elite british athletes. Eur J Appl Physiol 89:619–623

    Article  PubMed  CAS  Google Scholar 

  • Ekblom B, Huot R, Stein EM, Thorstensson A (1975) Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol 39:71–75

    PubMed  CAS  Google Scholar 

  • Ekblom B, Wilson G, Åstrand P-O (1976) Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol 40:379–383

    PubMed  CAS  Google Scholar 

  • Garland SJ, McComas AJ (1990) Reflex inhibition of human soleus muscle during fatigue. J Physiol (Lond) 429:17–27

    CAS  Google Scholar 

  • Hammond HK, White FC, Bhargava V, Shabetai R (1992) Heart size and maximal cardiac output are limited by the pericardium. Am J Physiol 263: H1675–H1681

    PubMed  CAS  Google Scholar 

  • Helge JW, Lundby C, Christensen DL, Langfort J, Messonnier L, Zacho M, Andersen JL, Saltin B (2003) Skiing across the Greenland icecap: divergent effects on limb muscle adaptations and substrate oxidation. J Exp Biol 206:1075–1083

    Article  PubMed  Google Scholar 

  • Hermansen L (1973) Oxygen transport during exercise in human subjects. Acta Physiol Scand Suppl 399:1–104

    PubMed  CAS  Google Scholar 

  • Hill AV, Lupton H (1923) Muscular exercise, lactic acid, and the supply and utilization of oxygen. QJM 16:135–171

    CAS  Google Scholar 

  • Jensen K, Jorgensen S, Johansen L (2002) A metabolic cart for measurement of oxygen uptake during human exercise using inspiratory flow rate. Eur J Appl Physiol 87:202–206

    Article  PubMed  Google Scholar 

  • Jones AM, McConnell AM (1999) Effect of exercise modality on oxygen uptake kinetics during heavy exercise. Eur J Appl Physiol 80:213–219

    Article  CAS  Google Scholar 

  • Kayser B (2003) Exercise starts and ends in the brain. Eur J Appl Physiol 90:411–419

    Article  PubMed  Google Scholar 

  • Kernell D (1969) Synaptic conductance changes and the repetitive impulse discharge of spinal motoneurones. Exp Brain Res 15:291–294

    CAS  Google Scholar 

  • Kitamura K, Jorgensen CR, Gobel FL, Taylor HL, Wang Y (1972) Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol 32:516–522

    PubMed  CAS  Google Scholar 

  • Koga S, Shiojiri T, Shibasaki M, Fukuba Y, Fukuoka Y, Kondo N (1996) Kinetics of oxygen uptake and cardiac output at onset of arm exercise. Respir Physiol 103:195–202

    Article  PubMed  CAS  Google Scholar 

  • Kukulka CG, Moore MA, Russell AG (1986) Changes in human alpha-motoneuron excitability during sustained maximum isometric contractions. Neuroscience Lett 68:327–333

    Article  CAS  Google Scholar 

  • Lambert EV, St Clair Gibson A, Noakes TD (2005) Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med 39:52–62

    Article  PubMed  CAS  Google Scholar 

  • Loscher WN, Cresswell AG, Thorstensson A (1996) Excitatory drive to the alpha-motoneuron pool during a fatiguing submaximal contraction in man. J Physiol (Lond) 491(Pt 1):271–280

    Google Scholar 

  • Macefield G, Hagbarth KE, Gorman R, Gandevia SC, Burke D (1991) Decline in spindle support to alpha-motoneurones during sustained voluntary contractions. J Physiol (Lond) 440:497–512

    CAS  Google Scholar 

  • Myers J, Walsh D, Buchanan N, Froelicher VF (1989) Can maximal cardiopulmonary capacity be recognized by a plateau in oxygen uptake? Chest 96:1312–1316

    PubMed  CAS  Google Scholar 

  • Myers J, Walsh D, Sullivan M, Froelicher V (1990) Effect of sampling on variability and plateau in oxygen uptake. J Appl Physiol 68:404–410

    Article  PubMed  CAS  Google Scholar 

  • Nelson RR, Gobel FL, Jorgensen CR, Wang K, Wang Y, Taylor HL (1974) Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 50:1179–1189

    PubMed  CAS  Google Scholar 

  • Noakes TD (1997) 1996 J.B. Wolffe memorial lecture. Challenging beliefs: Ex Africa simper aliquid novi. Med Sci Sports Exerc 29:571–590

    PubMed  CAS  Google Scholar 

  • Noakes TD (1998) Maximal oxygen uptake: "classical" versus "contempary" viewpoints: a rebuttal. Med Sci Sports Exerc 30:1381–1398

    Article  PubMed  CAS  Google Scholar 

  • Noakes TD (2000) Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports 10:123–145

    Article  PubMed  CAS  Google Scholar 

  • Noakes TD, Peltonen JE, Rusko HK (2001) Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. J Exp Biol 204(Pt 18):3225–3234

    PubMed  CAS  Google Scholar 

  • Nordlund MM, Thorstensson A, Cresswell AG (2004a) Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions. J Appl Physiol 96:218–225

    Article  PubMed  Google Scholar 

  • Nordlund MM, Thorstensson A, Cresswell AG (2004b) Conditioning Ia-afferent stimulation reduces the soleus Hoffman reflex in humans when muscle spindles are assumed to be inactive. Neurosci Lett 366:250–253

    Article  PubMed  CAS  Google Scholar 

  • Robergs RA (2001) An exercise physiologist’s “contemporary” interpretations of the “ugly and creaking edifices” of the VO2max concept. J Ex Physiol 4:1–44

    Google Scholar 

  • Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159

    PubMed  CAS  Google Scholar 

  • Secher NH, Ruberg-Larsen N, Binkhorst RA, Bonde-Petersen F (1974) Maximal oxygen uptake during arm cranking and combined arm plus leg exercise. J Appl Physiol 36:515–518

    PubMed  CAS  Google Scholar 

  • Secher NH, Clausen JP, Klausen K, Noer I, Trap-Jensen J (1977) Central and regional circulatory effects of adding arm exercise to leg exercise. Acta Physiol Scand 100:288–297

    Article  PubMed  CAS  Google Scholar 

  • Snell PG, Stray-Gundersen J, Levine BD, Hawkins MN, Raven PB (2007) Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exerc 39:103–107

    Article  PubMed  Google Scholar 

  • St Clair Gibson A, Noakes TD (2004) Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med 38:797–806

    Article  CAS  Google Scholar 

  • Stenberg J, Åstrand PO, Ekblom B, Royce J, Saltin B (1967) Hemodynamic response to work with different muscle groups, sitting and supine. J Appl Physiol 22:61–70

    PubMed  CAS  Google Scholar 

  • Stray-Gundersen J, Musch TI, Haidet GC, Swain DP, Ordway GA, Mitchell JH (1986) The effect of pericardiectomy on maximal oxygen consumption and maximal cardiac output in untrained dogs. Circ Res 58:523–530

    PubMed  CAS  Google Scholar 

  • Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 8:73–80

    PubMed  CAS  Google Scholar 

  • Taylor JL, Allen GM, Butler JE, Gandevia SC (2000) Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. J Appl Physiol 89:305–313

    PubMed  CAS  Google Scholar 

  • Wagner PD (2000) New ideas on limitations to VO2max. Exerc Sport Sci Rev 28:10–14

    PubMed  CAS  Google Scholar 

  • Weir JP, Beck TW, Cramer JT, Housh TJ (2006) Is fatigue all in your head? A critical review of the central governor model. Br J Sports Med 40:573–586

    Article  PubMed  CAS  Google Scholar 

  • Whipp BJ (1994) The slow component of O2 uptake kinetics during heavy exercise. Med Sci Sports Exerc 26:1319–1326

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault Brink-Elfegoun.

Additional information

Thibault Brink-Elfegoun and Hans-Christer Holmberg contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brink-Elfegoun, T., Holmberg, HC., Ekblom, M.N. et al. Neuromuscular and circulatory adaptation during combined arm and leg exercise with different maximal work loads. Eur J Appl Physiol 101, 603–611 (2007). https://doi.org/10.1007/s00421-007-0526-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0526-4

Keywords

Navigation