Skip to main content
Log in

Cross-validation of the 20- versus 30-s Wingate anaerobic test

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The 30-s Wingate anaerobic test (30-WAT) is the most widely accepted protocol for measuring anaerobic response, despite documented physical side effects. Abbreviation of the 30-WAT without loss of data could enhance subject compliance while maintaining test applicability. The intent of this study was to quantify the validity of the 20-s Wingate anaerobic test (20-WAT) versus the traditional 30-WAT. Fifty males (mean ± SEM; age = 20.5 ± 0.3 years; Ht = 1.6 ± 0.01 m; Wt = 75.5 ± 2.6 kg) were randomly selected to either a validation (N = 35) or cross-validation group (N = 15) and completed a 20-WAT and 30-WAT in double blind, random order on separate days to determine peak power (PP; W kg−1), mean power (MP; W kg−1), and fatigue index (FI; %). Utilizing power outputs (relative to body mass) recorded during each second of both protocols, a non-linear regression equation (Y 20WAT+10 = 31.4697 e−0.5[ln(X second/1174.3961)/2.63692]; r 2 = 0.97; SEE = 0.56 W kg−1) successfully predicted (error ∼10%) the final 10 s of power outputs in the cross-validation population. There were no significant differences between MP and FI between the 20-WAT that included the predicted 10 s of power outputs (20-WAT+10) and the 30-WAT. When derived data were subjected to Bland–Altman analyses, the majority of plots (93%) fell within the limits of agreement (±2SD). Therefore, when compared to the 30-WAT, the 20-WAT may be considered a valid alternative when used with the predictive non-linear regression equation to derive the final power output values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen DG, Westerblad JA, Lee JA, Lannergren J (1992) Role of excitation–contraction coupling in muscle fatigue. Sports Med 13:116–126

    PubMed  CAS  Google Scholar 

  • Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Statistician 32:307–317

    Article  Google Scholar 

  • American College of Sports Medicine (1997) Policy statement regarding the use of human subjects and informed consent. Med Sci Sports Exerc 29:5

    Google Scholar 

  • Ansley L, Robson PJ, Gibson A, Noakes TD (2004) Anticipatory pacing strategies during supramaximal exercise lasting longer than 30 s. Med Sci Sports Exerc 36:309–314

    Article  PubMed  Google Scholar 

  • Bar-Or O (1987) The Wingate anaerobic test: an update on methodology, reliability and validity. Sports Med 4:381–394

    PubMed  CAS  Google Scholar 

  • Bar-Or O, Dotan R, Inbar O (1977) A 30 s all-out ergometric test: its reliability and validity for anaerobic capacity. Isr J Med Sci 13:126

    Google Scholar 

  • Beneke R, Pollmann C, Bleif I, Leithauser RM, Hutler M (2002) How anaerobic is the Wingate anaerobic test for humans? Eur J Appl Physiol 87:388–392

    Article  PubMed  CAS  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurements. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  • Burnley M, Doust JH, Jones AM (2005) Effects of prior warm-up regime on severe-intensity cycling performance. Med Sci Sports Exerc 37:838–845

    Article  PubMed  Google Scholar 

  • Calbet JA, De Paz JA, Garatachea N, Cabeza de Vaca S, Chavarren J (2003) Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol 94:668–676

    PubMed  CAS  Google Scholar 

  • Davis JA (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17:6–21

    PubMed  CAS  Google Scholar 

  • Gastin PB (2001) Energy system interaction and relative contribution during maximal exercise. Sports Med 31:725–741

    Article  PubMed  CAS  Google Scholar 

  • Granier P, Mercier B, Mercier J, Anselme F, Prefaut C (1995) Aerobic and anaerobic contribution to Wingate test performance in sprint and middle-distance runners. Eur J Appl Physiol 70:58–65

    Article  CAS  Google Scholar 

  • Groussard C, Machefer G, Rannou F (2003) Physical fitness and plasma non-enzymatic antioxidant status at rest and after a Wingate test. Can J Appl Physiol 28:79–92

    PubMed  CAS  Google Scholar 

  • Jacobs I, Bar-Or O, Karlsson J, Dotan R, Tesch P, Kaiser P, Inbar O (1982) Changes in muscle metabolites in females with 30-s exhaustive exercise. Med Sci Sports Exerc 14:457–460

    PubMed  Google Scholar 

  • Kaczkowksi W, Montgomery DL, Taylor AW, Klissouras V (1982) The relationship between muscle fiber composition and maximal anaerobic power and capacity. J Sports Med Phys Fitness 22:407–413

    Google Scholar 

  • Marquardt JA, Bacharach DA, Kelly JM (1993) Comparison of power outputs generated during 20 and 30 s Wingate tests. Res Q Exerc Sport 64:A33–A34

    Google Scholar 

  • Mastrangelo MA, Chaloupka EC, Kang J, Lacke CJ, Angelucci JA, Martz WP, Biren GB (2004) Predicting anaerobic capacity in 11–13 year-old boys. J Strength Cond Res 18:72–76

    Article  PubMed  Google Scholar 

  • Maud PJ, Schultz BB (1989) Norms for the Wingate anaerobic test with comparison to another similar test. Res Q Exerc Sport 60:144–151

    PubMed  CAS  Google Scholar 

  • Medbø JI, Tabata I (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 75:1654–1660

    PubMed  Google Scholar 

  • Murphy MM, Patton JF, Frederick FA (1986) Comparative anaerobic power of men and women. Aviat Space Environ Med 57:636–641

    PubMed  CAS  Google Scholar 

  • Smith JC, Hill DW (1991) Contribution of energy systems during a Wingate power test. Br J Sports Med 25:196–199

    PubMed  CAS  Google Scholar 

  • Ulmer HV (1996) Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia 52:416–420

    Article  PubMed  CAS  Google Scholar 

  • Van Someren KA, Palmer GS (2003) Prediction of 200-m sprint kayaking performance. Can J Appl Physiol 28:505–517

    PubMed  Google Scholar 

  • Vanderford ML, Meyers MC, Skelly WA, Stewart CC, Hamilton KL (2004) Physiological and sport-specific skill response of Olympic youth soccer athletes. J Strength Cond Res 18:334–342

    Article  PubMed  Google Scholar 

  • Vandewalle H, Heller J, Pérès G, Raveneau S, Monod H (1987a) Etude comparative entre le Wingate test et un test force-vitesse sur egocycle. Sci Sports 2:279–284

    Article  Google Scholar 

  • Vandewalle H, Pérès G, Monod H (1987b) Standard anaerobic exercise tests. Sports Med 4:268–289

    Article  CAS  Google Scholar 

  • Vincent S, Berthon P, Zouhal H, Moussa E, Catheline M, Betue-Ferrer D, Gratas-Delamarche A (2004) Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. Eur J Appl Physiol 91:15–21

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Matthew Laurent Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthew Laurent, C., Meyers, M.C., Robinson, C.A. et al. Cross-validation of the 20- versus 30-s Wingate anaerobic test. Eur J Appl Physiol 100, 645–651 (2007). https://doi.org/10.1007/s00421-007-0454-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0454-3

Keywords

Navigation