Skip to main content

Parabolic flight experience is related to increased release of stress hormones

Abstract

Numerous studies have shown significant effects of weightlessness on adaptational processes of the CNS, cardiovascular and/or muscular system. Most of these studies have been carried out during parabolic flights, using the recurring 20 s of weightlessness at each parabola. Although some of these studies reported on potential influences not only of weightlessness but also of the stressful situation within a parabolic flight, especially provoked by the ongoing changes between 1.8, 1 and 0 G, so far there seems to be only marginal information about objective parameters of stress evoked by parabolic flights. By collecting blood samples from a permanent venous catheter several times during parabolic flights, we were able to show an increase of prolactin, cortisol and ACTH in the course of a 120 min flight. We conclude, therefore, that previous reported effects of weightlessness on adaptational processes may be affected not only by weightlessness but also by the exposure to other stressors experienced within the environment of a Zero-G airbus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Augurelle AS, Penta M, White O, Thonnard JL (2003) The effects of a change in gravity on the dynamics of prehension. Exp Brain Res 148:533–540

    PubMed  Google Scholar 

  • Blogg SL, Gennser M (2006) Cerebral blood flow velocity and psychomotor performance during acute hypoxia. Aviat Space Environ Med 77:107–113

    PubMed  Google Scholar 

  • Bock O, Fowler B, Comfort D (2001) Human sensorimotor coordination during spaceflight: an analysis of pointing and tracking responses during the “Neurolab” Space Shuttle mission. Aviat Space Environ Med 72:877–883

    PubMed  CAS  Google Scholar 

  • Bock O, Abeele S, Eversheim U (2003) Sensorimotor performance and computational demand during short-term exposure to microgravity. Aviat Space Environ Med 74:1256–1262

    PubMed  Google Scholar 

  • Buchanan TW, Lovallo WR (2001) Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 26:307–317

    PubMed  Article  CAS  Google Scholar 

  • Cahill L, Alkire MT (2003) Epinephrine enhancement of human memory consolidation: interaction with arousal at encoding. Neurobiol Learn Mem 79:194–198

    PubMed  Article  CAS  Google Scholar 

  • Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284

    PubMed  Article  CAS  Google Scholar 

  • Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267:1244–1252

    PubMed  Article  CAS  Google Scholar 

  • Courtney CH, McAllister AS, McCance DR, Bell PM, Hadden DR, Leslie H, Sheridan B, Atkinson AB (2000) Comparison of one week 0900 h serum cortisol, low and standard dose synacthen tests with a 4 to 6 week insulin hypoglycaemia test after pituitary surgery in assessing HPA axis. Clin Endocrinol (Oxf) 53:431–436

    Article  CAS  Google Scholar 

  • Crofton PM, Midgley PC (2004) Cortisol and growth hormone responses to spontaneous hypoglycaemia in infants and children. Arch Dis Child 89:472–478

    PubMed  Article  CAS  Google Scholar 

  • Diver MJ, Hughes JG, Hutton JL, West CR, Hipkin LJ (1994) The long-term stability in whole blood of 14 commonly-requested hormone analytes. Ann Clin Biochem 31(Pt6):561–565

    PubMed  CAS  Google Scholar 

  • Drummer C, Stromeyer H, Riepl RL, Konig A, Strollo F, Lang RE, Maass H, Rocker L, Gerzer R (1990) Hormonal changes after parabolic flight: implications on the development of motion sickness. Aviat Space Environ Med 61:821–828

    PubMed  Google Scholar 

  • Ellis MJ, Livesey JH, Evans MJ (2003) Hormone stability in human whole blood. Clin Biochem 36:109–112

    Article  CAS  Google Scholar 

  • Elzinga BM, Roelofs K (2005) Cortisol-induced impairments of working memory require acute sympathetic activation. Behav Neurosci 119:98–103

    PubMed  Article  CAS  Google Scholar 

  • Evans MJ, Livesey JH, Ellis MJ, Yandle TG (2001) Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clin Biochem 34:107–112

    PubMed  Article  CAS  Google Scholar 

  • Eversmann T, Gottsmann M, Uhlich E, Ulbrecht G, von Werder K, Scriba PC (1978) Increased secretion of growth hormone, prolactin, antidiuretic hormone, and cortisol induced by the stress of motion sickness. Aviat Space Environ Med 49:53–57

    PubMed  CAS  Google Scholar 

  • Farrace S, Biselli R, Urbani L, Ferlini C, De Angelis C (1996) Evaluation of stress induced by flight activity by measuring the hormonal response. Biofeedback Self Regul 21:217–228

    PubMed  Article  CAS  Google Scholar 

  • Fowler B, Manzey D (2000) Summary of research issues in monitoring of mental and perceptual-motor performance and stress in space. Aviat Space Environ Med 71:A76–A77

    PubMed  CAS  Google Scholar 

  • Fowler B, Comfort D, Bock O (2000) A review of cognitive and perceptual-motor performance in space. Aviat Space Environ Med 71:A66–A68

    PubMed  CAS  Google Scholar 

  • Gerra G, Zaimovic A, Mascetti GG, Gardini S, Zambelli U, Timpano M, Raggi MA, Brambilla F (2001) Neuroendocrine responses to experimentally-induced psychological stress in healthy humans. Psychoneuroendocrinology 26:91–107

    PubMed  Article  CAS  Google Scholar 

  • Henry JP (1992) Biological basis of the stress response. Integr Physiol Behav Sci 27:66–83

    PubMed  CAS  Google Scholar 

  • Hermsdörfer J, Marquardt C, Philipp J, Zierdt A, Nowak D, Glasauer S, Mai N (2000) Moving weightless objects: grip force control during microgravity. Exp Brain Res 132:52–64

    PubMed  Article  Google Scholar 

  • Kirschbaum C, Prussner JC, Stone AA, Federenko I, Gaab J, Lintz D, Schommer N, Hellhammer DH (1995) Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy men. Psychosom Med 57:468–474

    PubMed  CAS  Google Scholar 

  • Kirschbaum C, Wolf OT, May M, Wippich W, Hellhammer DH (1996) Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci 58:1475–1483

    PubMed  Article  CAS  Google Scholar 

  • Knopfli B, Calvert R, Bar-Or O, Villiger B, Von Duvillard SP (2001) Competition performance and basal nocturnal catecholamine excretion in cross-country skiers. Med Sci Sports Exerc 33:1228–1232

    PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio P (1992) Gravitoinertial force level affects the appreciation of limb position during muscle vibration. Brain Res 592:175–180

    PubMed  Article  CAS  Google Scholar 

  • Lackner JR, DiZio P (1996) Motor function in microgravity: movement in weightlessness. Curr Opin Neurobiol 6:744–750

    PubMed  Article  CAS  Google Scholar 

  • Nicogossian AE, Huntoon CL, Pool SM (1994) Space physiology and medicine. Lea & Febiger, Philadelphia

    Google Scholar 

  • Noteboom JT, Barnholt KR, Enoka RM (2001) Activation of the arousal response and impairment of performance increase with anxiety and stressor intensity. J Appl Physiol 91:2093–2101

    PubMed  CAS  Google Scholar 

  • Pozzo T, Papaxanthis C, Stapley P, Berthoz A (1998) The sensorimotor and cognitive integration of gravity. Brain Res Brain Res Rev 28:92–101

    PubMed  Article  CAS  Google Scholar 

  • Reilly RE, Parker JF Jr (1968) Effect of heat stress and prolonged activity on perceptual-motor performance NASA-CR-1153. NASA Contract Rep NASA CR 1-51

  • Ross HE, Schwartz E, Emmerson P (1987) The nature of sensorimotor adaptation to altered G-levels: evidence from mass-discrimination. Aviat Space Environ Med 58(Suppl 9):A148–A152

    PubMed  CAS  Google Scholar 

  • Sangals J, Heuer H, Manzey D, Lorenz B (1999) Changed visuomotor transformations during and after prolonged microgravity. Exp Brain Res 129:378–390

    PubMed  Article  CAS  Google Scholar 

  • Schofl C, Becker C, Prank K, von zur Muhlen A, Brabant G (1997) Twenty-four-hour rhythms of plasma catecholamines and their relation to cardiovascular parameters in healthy young men. Eur J Endocrinol 137:675–683

    PubMed  Article  CAS  Google Scholar 

  • Schommer NC, Hellhammer DH, Kirschbaum C (2003) Dissociation between reactivity of the hypothalamus–pituitary–adrenal axis and the sympathetic–adrenal–medullary system to repeated psychosocial stress. Psychosom Med 65:450–460

    PubMed  Article  CAS  Google Scholar 

  • Struder HK, Hollmann W, Weicker H, Schiffer T, Weber K (1999) Blood oxygen partial pressure affects plasma prolactin concentration in humans. Acta Physiol Scand 165:265–269

    PubMed  Article  CAS  Google Scholar 

  • Thiagarajan AB, Gleiter CH, Mefford IN, Eskay RL, Nutt DJ (1989) Effect of single and repeated electroconvulsive shock on the hypothalamic-pituitary-adrenal axis and plasma catecholamines in rats. Psychopharmacology (Berl) 97:548–552

    Article  CAS  Google Scholar 

  • Thomas L (2000) Labor und Diagnose, Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. Frankfurt a.M., TH-Books Verlagsgesellschaft

  • Tuchelt H, Dekker K, Bahr V, Oelkers W (2000) Dose-response relationship between plasma ACTH and serum cortisol in the insulin-hypoglycaemia test in 25 healthy subjects and 109 patients with pituitary disease. Clin Endocrinol (Oxf) 53:301–307

    Article  CAS  Google Scholar 

  • Udelsman R, Holbrook NJ (1994) Endocrine and molecular responses to surgical stress. Curr Probl Surg 31:653–720

    PubMed  Article  CAS  Google Scholar 

  • Weinberg RS, Ragan J (1978) Motor performance under three levels of trait anxiety and stress. J Mot Behav 10:169–176

    PubMed  CAS  Google Scholar 

  • Wolf OT, Schommer NC, Hellhammer DH, McEwen BS, Kirschbaum C (2001) The relationship between stress induced cortisol levels and memory differs between men and women. Psychoneuroendocrinology 26:711–720

    PubMed  Article  CAS  Google Scholar 

  • Yen SSC (1991) Prolactin in human reproduction. In: Yen SSC, Jaffe RB (eds) Reproductive endocrinology. physiology and clinical management. Saunders, Philadelphia, pp 357–388

    Google Scholar 

  • Zago M, Lacquaniti F (2005) Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth. J Neurophysiol 94:1346–1357

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the analytical team of the Institute of Cardiology and Sports Medicine, Anke Manderfeld and Astrid Hofrichter for their outstanding experience and help. Thanks to all our subjects, suffering more or less. A special thank goes to Mark Satterthwaite for doing the final edits on this manuscript. Finally we like to thank the team at NOVESPACE for giving us all the support we needed. This study was made possible by a grant of the German Space Agency (DLR) 50WB0519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schneider.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schneider, S., Brümmer, V., Göbel, S. et al. Parabolic flight experience is related to increased release of stress hormones. Eur J Appl Physiol 100, 301–308 (2007). https://doi.org/10.1007/s00421-007-0433-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0433-8

Keywords

  • Neuroendocrine hormones
  • Stress
  • Parabolic flight
  • Weightlessness