Skip to main content
Log in

Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The application of an orthostatic stress such as lower body negative pressure (LBNP) has been proposed to minimize the effects of weightlessness on the cardiovascular system and subsequently to reduce the cardiovascular deconditioning. The KAATSU training is a novel method to induce muscle strength and hypertrophy with blood pooling in capacitance vessels by restricting venous return. Here, we studied the hemodynamic, autonomic nervous and hormonal responses to the restriction of femoral blood flow by KAATSU in healthy male subjects, using the ultrasonography and impedance cardiography. The pressurization on both thighs induced pooling of blood into the legs with pressure-dependent reduction of femoral arterial blood flow. The application of 200 mmHg KAATSU significantly decreased left ventricular diastolic dimension (LVDd), cardiac output (CO) and diameter of inferior vena cava (IVC). Similarly, 200 mmHg KAATSU also decreased stroke volume (SV), which was almost equal to the value in standing. Heart rate (HR) and total peripheral resistance (TPR) increased in a similar manner to standing with slight change of mean blood pressure (mBP). High-frequency power (HFRR) decreased during both 200 mmHg KAATSU and standing, while low-frequency/high-frequency power (LFRR/HFRR) increased significantly. During KAATSU and standing, the concentration of noradrenaline (NA) and vasopressin (ADH) and plasma renin activity (PRA) increased. These results indicate that KAATSU in supine subjects reproduces the effects of standing on HR, SV, TPR, etc., thus stimulating an orthostatic stimulus. And, KAATSU training appears to be a useful method for potential countermeasure like LBNP against orthostatic intolerance after spaceflight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe T, Yasuda T, Sato Y, Midorikawa T, Inoue K, Ryushi T, Kearns CF, Ishii N (2004) Muscle size and IGF-1 increased after two weeks of low-intensity “Kaatsu” resistance training. Med Sci Sports Exerc 36:S353

    Google Scholar 

  • Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, KAATSU-walk training. J Appl Physiol 100:1460–1466

    Article  PubMed  CAS  Google Scholar 

  • Arbeille P, Fomina G, Achaibou F, Pottier J, Kotovskaya A (1995) Cardiac and vascular adaptation to 0 g with and without thigh cuffs (Antares 14 and Altair 21 day Mir spaceflights). Acta Astronaut 36:8–12

    Article  Google Scholar 

  • Arbeille P, Herault S, Fomina G, Roumy J, Alferova I, Gharib C (1999) Influences of thigh cuffs on the cardiovascular system during 7 day dead-down bed-rest. J Appl Physiol 87:2168–2176

    PubMed  CAS  Google Scholar 

  • Bailey JJ, Pottala EW, Rasmussen KLR (1994) Techniques for enhancement of RR interval variability power spectrum in short epochs of simian monitor ECGs. In: Murray A, Aezbaecher R (eds) Computers in Cardiology. Los Alamitos, CA: IEEEE Computer Society Press, pp 557–560

  • Blomqvist CG, Buckey JC, Gaffney FA, Lane LD, Levine BD, Waterpaugh DE (1994) Mechanisms of post-flight orthostatic intolerance. J Gravit Physiol 1:122–124

    Google Scholar 

  • Bonde-Petersen F, Suzuki M, Christensen NJ (1984) Cardiovascular and hormonal responses to bicycle exercise during lower body negative pressure. Adv Space Rev 12:31–33

    Article  Google Scholar 

  • Brown CM, Hecht MJ, Neundörfer B, Hilz MJ (2003) Effects of lower body negative pressure on cardiac and vascular responses to carotid barorelex stimulation. Physol Res 52:637–645

    CAS  Google Scholar 

  • Buckley JC, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, Gaffney FA, Blomqvist CG (1996) Orthostatic intolerance after spaceflight. J Appl Physiol 81:7–18

    Google Scholar 

  • Burklow TR, Moak JP, Bailey JJ, Makhlouf FT (1999) Neurally mediated cardiac syncope: autonomic modulation after normal saline infusion. J Am Coll Cardiol 33:2059–2066

    Article  PubMed  CAS  Google Scholar 

  • Convertino VA, Sandler H (1995) Exercise countermeasures for spaceflight. Acta Astronaut 35:253–270

    Article  PubMed  CAS  Google Scholar 

  • Fortin J, Habenbacher W, Gruellenberger R, Wach P, Skrabal F (1998) Real-time monitor for hemodynamic beat-to-beat parameters and power spectra analyses of the biosignals. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, pp 360–363

  • Franke WD, Lee K, Graff SR, Flatau AB (2000) Effects of gender on the autonomic modulation of the cardiovascular responses to lower body negative pressure. Aviat Space Environ Med 71:626–631

    PubMed  CAS  Google Scholar 

  • Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE (1996) Subnormal norepinephrine release relates to pre-syncope in astronauts after spaceflight. J Appl Physiol 81:2134–2141

    PubMed  CAS  Google Scholar 

  • Furlan R, JacobG, Palazzolo L, Rimoldi A, Diedrich A, Harris PA, Porta A, Malliani A, Mosqueda-Garcia R, Robertson D (2001) Sequential modulation of cardiac autonomic control induced by cardiopulmonary and arterial baroreflex mechanisms. Circulation 104:2932–2937

    PubMed  CAS  Google Scholar 

  • Gratze G, Fortin J, Holler A, Grasenick K, Pfurscheller G, Wach P, Schonegger J, Katanko P, Skrabal F (1998) A software package for non-invasive, real-time beat-to-beat monitoring of total peripheral resistance and for assessment of autonomic function. Comput Biol Med 28:121–142

    Article  PubMed  CAS  Google Scholar 

  • Güell A, Braak L, Pavy Le Traon A, Gharib C (1990) Cardiovascular deconditioning during weightlessness stimulation and the use of lower body negative pressure as a contermeasure to orthoststic intolerance. Acta Astronaut 21:667–672

    Article  PubMed  Google Scholar 

  • Güell A, Cornac A, Faurat MM, Gauquelin G, Traon AP, harib CL (1992) Lower body negative pressure as countermeasure against orthostatic intolerance for long term space flight. Acta Astronaut 27:103–107

    Article  PubMed  Google Scholar 

  • Hargens AR (1994) Recent bed rest results and countermeasure development at NASA. Acta Physiol Scand 150:103–114

    Article  Google Scholar 

  • Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakov V, Arbeille P (2000) Cardiac, arterial and venous adaptation to wightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol 81:384–390

    Article  PubMed  CAS  Google Scholar 

  • Lathers CM, Charles JB (1993) Use of lower body negative pressure to counter symptoms of orthostatic intolerance in patients, bed rest subjects, and astronauts. J Clin Pharmacol 33:1071–1085

    PubMed  CAS  Google Scholar 

  • Lee SMC, Bennett BS, Hargens AR, Watenpaugh DE, Ballard RE, MUrghy G, Ford SR, Fortney SM (1997) Upright exercise or supine LBNP exercise maintains exercise responses after bed rest. Med Sci Sports Exerc 29:892–900

    PubMed  CAS  Google Scholar 

  • Lindgren KN, Kraft D, Ballard RE, Tucker A, Hargens AR (1998) Venoconstriction thigh cuffs impede fluid shifts during simulated microgravity. Aviat Space Environ Med 69:1052–1058

    PubMed  CAS  Google Scholar 

  • Lucini D, Furlan R, Villa P, Mosqueda-Garcia R, Diedrich A, Robertson D, Mallaini A, Porta A, Pagani M. (2004) Altered profile of baroreflex and autonomic responses to lower body negative pressure in chronic orthostatic intolerance. J Hypertension 22:1535–1542

    Article  CAS  Google Scholar 

  • Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492

    PubMed  CAS  Google Scholar 

  • Meck JV, Reyes CJ, Perez SA, Goldberger AL, Ziegler MG (2001) Marked exacerbation of orthoststic intolerance after long vs. short-duration spaceflight in veteran astronauts. Psychosom Med 63:865–873

    PubMed  CAS  Google Scholar 

  • Melchior FM, Srinivasan RS, Thullier PH, Clére JM (1994) Simulation of cardiovascular response to lower body negative pressure from 0 to −40 mmHg. J Appl Physiol 77:630–639

    PubMed  CAS  Google Scholar 

  • Millet C, Custaud MA, Allevard Am, Gharib C, Gauquelin-Koch G, Fortrat JO (2000) Adaptations to a 7 day head-down bed rest with thigh cuffs. Med Sci Sports Exerc 32:1748–1756

    Article  PubMed  CAS  Google Scholar 

  • Murthy G, Watenpaugh DE, Ballard RE, Hargens AR (1994) Exercise against lower body negative pressure as a countermeasure for cardiovascular and musculoskeletal deconditioning. Acta Astronaut 33:89–96

    Article  PubMed  CAS  Google Scholar 

  • Nicogossian A, Pool S, Sawin C (1995) Status and efficacy of countermeasures to physiological deconditioning from space flight. Acta Astronaut 36:393–398

    Article  PubMed  CAS  Google Scholar 

  • Penaz J (1973) Photoelectric measurement of blood pressure, volume and flow in the finger. Digest of the 10th International Conference on Medical and Biological Engineering, Dresden

  • Stevens PM, Lamb LE (1965) Effects of lower body negative pressure on the cardiovascular system. Am J Cardiol 16:506–515

    Article  PubMed  CAS  Google Scholar 

  • Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N (2000a) Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 88:61–65

    CAS  Google Scholar 

  • Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N (2000b) Effects of resistance exercise combined with moderate vascular occlusion on muscle function in humans. J Appl Physiol 88:2097–2106

    CAS  Google Scholar 

  • Takarada Y, Takazawa H, Ishii N (2000c) Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 32:2035–2039

    Article  CAS  Google Scholar 

  • Takarada Y, Sato Y, Ishii N (2002a) Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 86:308–314

    Article  Google Scholar 

  • Takarada Y, Ishii N (2002b) Effects of low-intensity resistance exercise with short interest rest period on muscular function in middle-aged women. J Strength Cond Res 16:123–128

    Article  Google Scholar 

  • Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Eto F, Nagai R, Sato Y, Nakajima T (2005) Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 95:65–73

    Article  PubMed  CAS  Google Scholar 

  • Tomaselli CM, Frey MA, Kenney RA, Hoffler GW (1987) Hysteresis in response to descending and ascending lower-body negative pressure. J Appl Physiol 63:719–725

    PubMed  CAS  Google Scholar 

  • Watenpaugh DE, Ballard RE, Schneider SM, Lee SMC, Ertl AC, William JM, Boda WL, Hutchinson KJ, Hargens AR (2000) Supine lower body negative pressure exercise during bed rest maintains upright exercise capacity. J Appl Physiol 89:218–227

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. H. Imuta and H. Oonuma for their valuable assistance in data analysis and preparation of this manuscript. Y. Sato is a co-researcher of our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Nakajima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iida, H., Kurano, M., Takano, H. et al. Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol 100, 275–285 (2007). https://doi.org/10.1007/s00421-007-0430-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0430-y

Keywords

Navigation