Skip to main content
Log in

Respiratory muscle training improves swimming endurance in divers

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Respiratory muscles can fatigue during prolonged and maximal exercise, thus reducing performance. The respiratory system is challenged during underwater exercise due to increased hydrostatic pressure and breathing resistance. The purpose of this study was to determine if two different respiratory muscle training protocols enhance respiratory function and swimming performance in divers. Thirty male subjects (23.4 ± 4.3 years) participated. They were randomized to a placebo (PRMT), endurance (ERMT), or resistance respiratory muscle training (RRMT) protocol. Training sessions were 30 min/day, 5 days/week, for 4 weeks. PRMT consisted of 10-s breath-holds once/minute, ERMT consisted of isocapnic hyperpnea, and RRMT consisted of a vital capacity maneuver against 50 cm H2O resistance every 30 s. The PRMT group had no significant changes in any measured variable. Underwater and surface endurance swim time to exhaustion significantly increased after RRMT (66%, P < 0.001; 33%, P = 0.003) and ERMT (26%, P = 0.038; 38%, P < 0.001). Breathing frequency (f b) during the underwater endurance swim decreased in RRMT (23%, P = 0.034) and tidal volume (V T) increased in both the RRMT (12%, P = 0.004) and ERMT (7%, P = 0.027) groups. Respiratory endurance increased in ERMT (216.7%) and RRMT (30.7%). Maximal inspiratory and expiratory pressures increased following RRMT (12%, P = 0.015, and 15%, P = 0.011, respectively). Results from this study indicate that respiratory muscle fatigue is a limiting factor for underwater swimming performance, and that targeted respiratory muscle training (RRMT > ERMT) improves respiratory muscle and underwater swimming performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaron EA, Seow KC, Johnson BD, Dempsey JA (1992) Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol 72(5):1818–1825

    PubMed  CAS  Google Scholar 

  • Akabas SR, Bazzy AR, DiMauro S, Haddad GG (1989) Metabolic and functional adaptation of the diaphragm to training with resistive loads. J Appl Physiol 66(2):529–535

    PubMed  CAS  Google Scholar 

  • Anonymous (1987) Standardization of spirometry—1987 update. Statement of the American Thoracic Society. Am Rev Respir Dis 136(5):1285–1298

    Google Scholar 

  • Babcock MA, Pegelow DF, Harms CA, Dempsey JA (2002) Effects of respiratory muscle unloading on exercise-induced diaphragm fatigue. J Appl Physiol 93(1):201–206

    PubMed  Google Scholar 

  • Belman MJ, Mittman C (1980) Ventilatory muscle training improves exercise capacity in chronic obstructive pulmonary disease patients. Am Rev Respir Dis 121(2):273–280

    PubMed  CAS  Google Scholar 

  • Boutellier U (1998) Respiratory muscle fitness and exercise endurance in healthy humans. Med Sci Sports Exerc 30(7):1169–1172

    Article  PubMed  CAS  Google Scholar 

  • Boutellier U, Piwko P (1992) The respiratory system as an exercise limiting factor in normal sedentary subjects. Eur J Appl Physiol Occup Physiol 64(2):145–152

    Article  PubMed  CAS  Google Scholar 

  • Boutellier U, Buchel R, Kundert A, Spengler C (1992) The respiratory system as an exercise limiting factor in normal trained subjects. Eur J Appl Physiol Occup Physiol 65(4):347–353

    Article  PubMed  CAS  Google Scholar 

  • Dempsey JA, Harms CA, Ainsworth DM (1996) Respiratory muscle perfusion and energetics during exercise. Med Sci Sports Exerc 28(9):1123–1128

    PubMed  CAS  Google Scholar 

  • Derion T, Reddan WG, Lanphier EH (1992) Static lung load and posture effects on pulmonary mechanics and comfort in underwater exercise. Undersea Biomed Res 19(2):85–96

    PubMed  CAS  Google Scholar 

  • Fairbarn MS, Coutts KC, Pardy RL, McKenzie DC (1991) Improved respiratory muscle endurance of highly trained cyclists and the effects on maximal exercise performance. Int J Sports Med 12(1):66–70

    PubMed  CAS  Google Scholar 

  • Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB et al (1997) Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 82(5):1573–1583

    PubMed  CAS  Google Scholar 

  • Harms CA, Wetter TJ, St Croix CM, Pegelow DF, Dempsey JA (2000) Effects of respiratory muscle work on exercise performance. J Appl Physiol 89(1):131–138

    PubMed  CAS  Google Scholar 

  • Kame VD, Pendergast DR, Termin B (1990) Physiologic responses to high intensity training in competitive university swimmers. J Swim Res 6:5–8

    Google Scholar 

  • Keens TG, Krastins IR, Wannamaker EM, Levison H, Crozier DN, Bryan AC (1977) Ventilatory muscle endurance training in normal subjects and patients with cystic fibrosis. Am Rev Respir Dis 116(5):853–860

    PubMed  CAS  Google Scholar 

  • Leith DE, Bradley M (1976) \({\dot{V}\hbox{O}_{2}}\) Ventilatory muscle strength and endurance training. J Appl Physiol 41(4):508–516

    PubMed  CAS  Google Scholar 

  • Loke J, Mahler DA, Virgulto JA (1982) Respiratory muscle fatigue after marathon running. J Appl Physiol Respir Environ Exerc Physiol 52(4):821–824

    CAS  Google Scholar 

  • Lundgren CE (1984) Respiratory function during simulated wet dives. Undersea Biomed Res 11(2):139–147

    PubMed  CAS  Google Scholar 

  • Mador MJ, Acevedo FA (1991) Effect of respiratory muscle fatigue on subsequent exercise performance. J Appl Physiol 70(5):2059–2065

    PubMed  CAS  Google Scholar 

  • Maio DA, Farhi LE (1967) Effect of gas density on mechanics of breathing. J Appl Physiol 23(5):687–693

    PubMed  CAS  Google Scholar 

  • Markov G, Spengler CM, Knopfli-Lenzin C, Stuessi C, Boutellier U (2001) Respiratory muscle training increases cycling endurance without affecting cardiovascular responses to exercise. Eur J Appl Physiol 85(3–4):233–239

    Article  PubMed  CAS  Google Scholar 

  • McConnell AK, Romer LM (2004) Respiratory muscle training in healthy humans: resolving the controversy. Int J Sports Med 25(4):284–293

    Article  PubMed  CAS  Google Scholar 

  • Musch TI (1993) Elevated diaphragmatic blood flow during submaximal exercise in rats with chronic heart failure. Am J Physiol 265(5 Pt 2):H1721–1726

    PubMed  CAS  Google Scholar 

  • Pardy RL, Rivington RN, Despas PJ, Macklem PT (1981) The effects of inspiratory muscle training on exercise performance in chronic airflow limitation. Am Rev Respir Dis 123(4 Pt 1):426–433

    PubMed  CAS  Google Scholar 

  • Powers SK, Lawler J, Criswell D, Dodd S, Grinton S, Bagby G, et al (1990) Endurance-training-induced cellular adaptations in respiratory muscles. J Appl Physiol 68(5):2114–2118

    PubMed  CAS  Google Scholar 

  • Powers SK, Criswell D, Lieu FK, Dodd S, Silverman H (1992) Exercise-induced cellular alterations in the diaphragm. Am J Physiol 263(5 Pt 2):R1093–R1098

    PubMed  CAS  Google Scholar 

  • Ramirez-Sarmiento A, Orozco-Levi M, Guell R, Barreiro E, Hernandez N, Mota S et al (2002) Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes (see comment). Am J Respir Crit Care Med 166(11):1491–1497

    Article  PubMed  Google Scholar 

  • Romer LM, McConnell AK, Jones DA (2002) Inspiratory muscle fatigue in trained cyclists: effects of inspiratory muscle training. Med Sci Sports Exerc 34(5):785–792

    Article  PubMed  Google Scholar 

  • Sheel AW (2002) Respiratory muscle training in healthy individuals: physiological rationale and implications for exercise performance. Sports Med 32(9):567–581

    Article  PubMed  Google Scholar 

  • Sonetti DA, Wetter TJ, Pegelow DF, Dempsey JA (2001) Effects of respiratory muscle training versus placebo on endurance exercise performance. Respir Physiol 127(2–3):185–199

    Article  PubMed  CAS  Google Scholar 

  • Sonne LJ, Davis JA (1982) Increased exercise performance in patients with severe COPD following inspiratory resistive training. Chest 81(4):436–439

    PubMed  CAS  Google Scholar 

  • Termin B, Pendergast D, Zaharkin J, Zaharkin M (1999) Pace lights and swim performance. Swim Techn 36(3):18–20

    Google Scholar 

  • Thalmann ED, Sponholtz DK, Lundgren CE (1979) Effects of immersion and static lung loading on submerged exercise at depth. Undersea Biomed Res 6(3):259–290

    PubMed  CAS  Google Scholar 

  • Thorsen E, Segadal K, Kambestad B, Gulsvik A (1990) Divers’ lung function: small airways disease? Br J Ind Med 47(8):519–523

    PubMed  CAS  Google Scholar 

  • Van Liew HD (1983) Mechanical and physical factors in lung function during work in dense environments. Undersea Biomed Res 10(3):255–264

    PubMed  CAS  Google Scholar 

  • Volianitis S, McConnell AK, Koutedakis Y, McNaughton L, Backx K, Jones DA (2001) Inspiratory muscle training improves rowing performance. Med Sci Sports Exerc 33(5):803–809

    PubMed  CAS  Google Scholar 

  • Wagner PD (1988) An integrated view of the determinants of maximum oxygen uptake. Adv Exp Med Biol 227:245–256

    PubMed  CAS  Google Scholar 

  • Warkander DE, Lundgren CE (1995) Dead space in the breathing apparatus; interaction with ventilation. Ergonomics 38(9):1745–1758

    PubMed  CAS  Google Scholar 

  • Warkander DE, Norfleet WT, Nagasawa GK, Lundgren CE (1992) Physiologically and subjectively acceptable breathing resistance in divers’ breathing gear. Undersea Biomed Res 19(6):427–445

    PubMed  CAS  Google Scholar 

  • Weiss LW (1991) The obtuse nature of muscular strength: the contribution of rest to its development and expression. J Appl Sport Sci Res 5(4):219–227

    Google Scholar 

  • Weiss LW, Coney HD, Clark FC (2003) Optimal post-training abstinence for maximal strength expression. Res Sports Med 11(3):145–155

    Article  Google Scholar 

  • Wells GD, Plyley M, Thomas S, Goodman L, Duffin J (2005) Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmer. Eur J Appl Physiol 94:527–540

    Article  PubMed  Google Scholar 

  • Wetter TJ, Harms CA, Nelson WB, Pegelow DF, Dempsey JA (1999) Influence of respiratory muscle work on VO(2) and leg blood flow during submaximal exercise. J Appl Physiol 87(2):643–651

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Naval Sea Coastal Systems Contract 1031419-1-28298. Skillful technical support from Messrs. Andrew Barth, Christopher Eisenhardt, Dean Markey, Frank Modlich, and Eric Stimson, as well as the efficient administrative work by Ms. Dusti Dean is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Pendergast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wylegala, J.A., Pendergast, D.R., Gosselin, L.E. et al. Respiratory muscle training improves swimming endurance in divers. Eur J Appl Physiol 99, 393–404 (2007). https://doi.org/10.1007/s00421-006-0359-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0359-6

Keywords

Navigation