Skip to main content
Log in

The effect of 18 h of simulated high altitude on left ventricular function

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

High altitude produces increased pulmonary capillary pressure by hypoxia induced pulmonary vasoconstriction. It is also possible that hypoxia results in mildly elevated left ventricular (LV) filling pressures that may contribute to the elevated capillary pressures. This study investigates the impact of simulated high altitude on global and regional echocardiographic measures of LV performance and filling pressure. Seventeen healthy individuals underwent transthoracic echocardiography, including tissue Doppler of the septal mitral annulus and basal segments before and after an 18-h overnight stay in a high altitude simulation tent with a FiO2 of 12%, simulating an altitude of approximately 4,000 m above sea level. In simulated high altitude, the ratio of early transmitral flow velocity to early myocardial relaxation velocity increased 22%, P < 0.001, and the Index of Myocardial Performance increased 30%, P < 0.01 due to an 58% increase in the isovolumic relaxation time (IVRT), P < 0.001. Simulated high altitude leads to a reduction in LV performance with an accompanying increase in markers of LV filling pressure. The significant changes in filling pattern and IVRT in the setting of normal and unchanged systolic function, indicates that hypoxia induces mild diastolic dysfunction in young healthy individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allemann Y, Sartori C, Lepori M, Pierre S, Melot C, Naeije R, Scherrer U, Maggiorini M (2000) Echocardiographic and invasive measurements of pulmonary artery pressure correlate closely at high altitude. Am J Physiol Heart Circ Physiol 279:H2013–H2016

    PubMed  CAS  Google Scholar 

  • Allemann Y, Rotter M, Hutter D, Lipp E, Sartori C, Scherrer U, Seiler C (2004) Impact of acute hypoxic pulmonary hypertension on LV diastolic function in healthy mountaineers at high altitude. Am J Physiol Heart Circ Physiol 286:H856–H862

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian V, Kaushik VS, Manchanda SC, Roy SB (1975) Effects of high altitude hypoxia on left ventricular systolic time intervals in man. Br Heart J 37:272–276

    PubMed  CAS  Google Scholar 

  • Bartsch P, Mairbaurl H, Maggiorini M, Swenson ER (2005) Physiological aspects of high-altitude pulmonary edema. J Appl Physiol 98:1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Busch T, Bartsch P, Pappert D, Grunig E, Hildebrandt W, Elser H, Falke KJ, Swenson ER (2001) Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. Am J Respir Crit Care Med 163:368–373

    PubMed  CAS  Google Scholar 

  • Fowles RE, Hultgren HN (1983) Left ventricular function at high altitude examined by systolic time intervals and M-mode echocardiography. Am J Cardiol 52:862–866

    Article  PubMed  CAS  Google Scholar 

  • Garcia MJ, Ares MA, Asher C, Rodriguez L, Vandervoort P, Thomas JD (1997) An index of early left ventricular filling that combined with pulsed Doppler peak E velocity may estimate capillary wedge pressure. J Am Coll Cardiol 29:448–454

    Article  PubMed  CAS  Google Scholar 

  • Garcia MJ, Palac RT, Malenka DJ, Terrell P, Plehn JF (1999) Color M-mode Doppler flow propagation velocity is a relatively preload-independent index of left ventricular filling. J Am Soc Echocardiogr 12:129–137

    Article  PubMed  CAS  Google Scholar 

  • Goetze JP, Gore A, Moller CH, Steinbruchel DA, Rehfeld JF, Nielsen LB (2004) Acute myocardial hypoxia increases BNP gene expression. FASEB J 18:1928–1930

    PubMed  CAS  Google Scholar 

  • Grunig E, Mereles D, Hildebrandt W, Swenson ER, Kubler W, Kuecherer H, Bartsch P (2000) Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J Am Coll Cardiol 35:980–987

    Article  PubMed  CAS  Google Scholar 

  • Hirata K, Ban T, Jinnouchi Y, Kubo S (1991) Echocardiographic assessment of left ventricular function and wall motion at high altitude in normal subjects. Am J Cardiol 68:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Huez S, Retailleau K, Unger P, Pavelescu A, Vachiery JL, Derumeaux G, Naeije R (2005) Right and left ventricular adaptation to hypoxia: a tissue Doppler imaging study. Am J Physiol Heart Circ Physiol 289:H1391–H1398

    Article  PubMed  CAS  Google Scholar 

  • Kjaergaard J, Hassager C, Oh JK, Kristensen JH, Berning J, Sogaard P (2005) Measurement of cardiac time intervals by Doppler tissue m-mode imaging of the anterior mitral leaflet. J Am Soc Echocardiogr 18:1058–1065

    Article  PubMed  Google Scholar 

  • Kjaergaard J, Snyder EM, Hassager C, Oh JK, Johnson BD (2006) Impact of preload and after-load on global and regional right ventricular function and pressure: A quantitative echocardiography study. J Am Soc Echocardiogr 19:515–521

    Article  PubMed  Google Scholar 

  • Lisauskas JB, Singh J, Bowman AW, Kovacs SJ (2001) Chamber properties from transmitral flow: prediction of average and passive left ventricular diastolic stiffness. J Appl Physiol 91:154–162

    PubMed  CAS  Google Scholar 

  • Maggiorini M, Melot C, Pierre S, Pfeiffer F, Greve I, Sartori C, Lepori M, Hauser M, Scherrer U, Naeije R (2001) High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation 103:2078–2083

    PubMed  CAS  Google Scholar 

  • Nagaya N, Satoh T, Uematsu M, Okano Y, Kyotani S, Nakanishi N, Kunieda T (1997) Shortening of Doppler-derived deceleration time of early diastolic transmitral flow in the presence of pulmonary hypertension through ventricular interaction. Am J Cardiol 79:1502–1506

    Article  PubMed  CAS  Google Scholar 

  • Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • Oh JK, Tajik J (2003) The return of cardiac time intervals: the phoenix is rising. J Am Coll Cardiol 42:1471–1474

    Article  PubMed  Google Scholar 

  • Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    PubMed  CAS  Google Scholar 

  • Perhonen M, Takala TE, Vuolteenaho O, Mantymaa P, Leppaluoto J, Ruskoaho H (1997) Induction of cardiac natriuretic peptide gene expression in rats trained in hypobaric hypoxic conditions. Am J Physiol 273:R344–R352

    PubMed  CAS  Google Scholar 

  • Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA (2002) Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 15:167–184

    Article  PubMed  Google Scholar 

  • Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ (2003) Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202

    Article  PubMed  Google Scholar 

  • Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA (2005) Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 112:2254–2262

    Article  PubMed  Google Scholar 

  • Ricart A, Maristany J, Fort N, Leal C, Pages T, Viscor G (2005) Effects of sildenafil on the human response to acute hypoxia and exercise. High Alt Med Biol 6:43–49

    Article  PubMed  CAS  Google Scholar 

  • Sartori C, Allemann Y, Trueb L, Lepori M, Maggiorini M, Nicod P, Scherrer U (2000) Exaggerated pulmonary hypertension is not sufficient to trigger high-altitude pulmonary oedema in humans. Schweiz Med Wochenschr 130:385–389

    PubMed  CAS  Google Scholar 

  • Sartori C, Allemann Y, Duplain H, Lepori M, Egli M, Lipp E, Hutter D, Turini P, Hugli O, Cook S, Nicod P, Scherrer U (2002) Salmeterol for the prevention of high-altitude pulmonary edema. N Engl J Med 346:1631–1636

    Article  PubMed  CAS  Google Scholar 

  • Savourey G, Guinet A, Besnard Y, Garcia N, Hanniquet AM, Bittel J (1995) Evaluation of the Lake Louise acute mountain sickness scoring system in a hypobaric chamber. Aviat Space Environ Med 66:963–967

    PubMed  CAS  Google Scholar 

  • Scherrer U, Sartori C, Lepori M, Allemann Y, Duplain H, Trueb L, Nicod P (1999) High-altitude pulmonary edema: from exaggerated pulmonary hypertension to a defect in transepithelial sodium transport. Adv Exp Med Biol 474:93–107

    PubMed  CAS  Google Scholar 

  • Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 2:358–367

    PubMed  CAS  Google Scholar 

  • Shave RE, Dawson E, Whyte G, George K, Gaze D, Collinson P (2004) Effect of prolonged exercise in a hypoxic environment on cardiac function and cardiac troponin T. Br J Sports Med 38:86–88

    Article  PubMed  CAS  Google Scholar 

  • Stojnic BB, Brecker SJ, Xiao HB, Helmy SM, Mbaissouroum M, Gibson DG (1992) Left ventricular filling characteristics in pulmonary hypertension: a new mode of ventricular interaction. Br Heart J 68:16–20

    PubMed  CAS  Google Scholar 

  • Sun JP, Popovic ZB, Greenberg NL, Xu XF, Asher CR, Stewart WJ, Thomas JD (2004) Noninvasive quantification of regional myocardial function using Doppler-derived velocity, displacement, strain rate, and strain in healthy volunteers: effects of aging. J Am Soc Echocardiogr 17:132–138

    Article  PubMed  Google Scholar 

  • Sutherland GR, Di Salvo G, Claus P, D’hooge J, Bijnens B (2004) Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr 17:788–802

    Article  PubMed  Google Scholar 

  • Swenson ER, Maggiorini M, Mongovin S, Gibbs JS, Greve I, Mairbaurl H, Bartsch P (2002) Pathogenesis of high-altitude pulmonary edema: inflammation is not an etiologic factor. JAMA 287:2228–2235

    Article  PubMed  Google Scholar 

  • Tei C, Nishimura RA, Seward JB, Tajik AJ (1997) Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr 10:169–178

    Article  PubMed  CAS  Google Scholar 

  • Toth M, Vuorinen KH, Vuolteenaho O, Hassinen IE, Uusimaa PA, Leppaluoto J, Ruskoaho H (1994) Hypoxia stimulates release of ANP and BNP from perfused rat ventricular myocardium. Am J Physiol 266:H1572–H1580

    PubMed  CAS  Google Scholar 

  • Vogel M, Cheung MM, Li J, Kristiansen SB, Schmidt MR, White PA, Sorensen K, Redington AN (2003) Noninvasive assessment of left ventricular force-frequency relationships using tissue Doppler-derived isovolumic acceleration: validation in an animal model. Circulation 107:1647–1652

    Article  PubMed  Google Scholar 

  • Wang CS, FitzGerald JM, Schulzer M, Mak E, Ayas NT (2005) Does this dyspneic patient in the emergency department have congestive heart failure? JAMA 294:1944–1956

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Study coordinators Minelle Hulsebus and Kathy O’Malley are thanked for their devoted work to the recruitment and data collection, and sonographer Jo-Ellen Ehrsam RDCS is acknowledged for her efforts in acquiring the echocardiographic images. This work was supported by NIH grant HL71478, AHA grants 56051Z, and 0525727Z and by US Public Health Service grant M01-RR00585. The Danish Heart Foundation supported the research fellowship of Dr. Kjaergaard, grant no. 04-10-B109-A166-22192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Kjaergaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjaergaard, J., Snyder, E.M., Hassager, C. et al. The effect of 18 h of simulated high altitude on left ventricular function. Eur J Appl Physiol 98, 411–418 (2006). https://doi.org/10.1007/s00421-006-0299-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0299-1

Keywords

Navigation