Abstract
Changes in the quadriceps femoris muscle with respect to anatomical cross sectional area (CSA), neural activation level and muscle strength were determined in 18 healthy men subjected to 8 weeks of horizontal bed rest (BR) with (n = 9) and without (n = 9) resistive vibration exercise (RVE). CSA of the knee extensor muscle group was measured with magnetic resonance imaging every 2 weeks during bed rest. In the control subjects (Ctrl), quadriceps femoris CSA decreased linearly over the 8 weeks of bed rest to −14.1 ± 5.2% (P < 0.05). This reduction was significantly (P < 0.001) mitigated by the exercise paradigm (−3.5 ± 4.2%; P < 0.05). Prior to and seven times during bed rest, maximal unilateral voluntary torque (MVT) values of the right leg were measured together with neural activation levels by means of a superimposed stimulation technique. For Ctrl, MVT decreased also linearly over time to −16.8 ± 7.4% after 8 weeks of bed rest (P < 0.01), whereas the exercise paradigm fully maintained MVT during bed rest. In contrast to previous reports, the maximal voluntary activation remained unaltered for both groups throughout the study. For Ctrl, the absence of deterioration of the activation level might have been related to the repeated testing of muscle function during the bed rest. This notion was supported by the observation that for a subset of Ctrl subjects (n = 5) the MVT of the left leg, which was not tested during BR, was reduced by 20.5 ± 10.1%, (P < 0.01) which was for those five subjects significantly (P < 0.05) more than the 11.1 ± 9.2% (P < 0.01) reduction for the right, regularly tested leg.
Similar content being viewed by others
References
Adams GR, Caiozzo VJ, Baldwin KM (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95:2185–2201
Akima H, Kubo K, Kanehisa H, Suzuki Y, Gunji A, Fukunaga T (2000) Leg-press resistance training during 20 days of 6 degrees head-down-tilt bed rest prevents muscle deconditioning. Eur J Appl Physiol 82:30–38
Alkner BA, Tesch PA (2004a) Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur J Appl Physiol 93:294–305
Alkner BA, Tesch PA (2004b) Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest. Acta Physiol Scand 181:345–357
Andersen JL, Gruschy-Knudsen T, Sandri C, Larsson L, Schiaffino S (1999) Bed rest increases the amount of mismatched fibers in human skeletal muscle. J Appl Physiol 86:455–460
Antonutto G, Capelli C, Girardis M, Zamparo P, di Prampero PE (1999) Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol 86:85–92
Bamman MM, Clarke MS, Feeback DL, Talmadge RJ, Stevens BR, Lieberman SA, Greenisen MC (1998) Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J Appl Physiol 84:157–163
Berg HE, Larsson L, Tesch PA (1997) Lower limb skeletal muscle function after 6 wk of bed rest. J Appl Physiol 82:182–188
Convertino VA, Doerr DF, Mathes KL, Stein SL, Buchanan P (1989) Changes in volume, muscle compartment, and compliance of the lower extremities in man following 30 days of exposure to simulated microgravity. Aviat Space Environ Med 60:653–658
de Ruiter CJ, Van Raak SM, Schilperoort JV, Hollander AP, de Haan A (2003) The effects of 11 weeks whole body vibration training on jump height, contractile properties and activation of human knee extensors. Eur J Appl Physiol 90:595–600
Deschenes MR, Giles JA, McCoy RW, Volek JS, Gomez AL, Kraemer WJ (2002) Neural factors account for strength decrements observed after short-term muscle unloading. Am J Physiol Regul Integr Comp Physiol 282:R578–R583
Duchateau J, Hainaut K (1987) Electrical and mechanical changes in immobilized human muscle. J Appl Physiol 62:2168–2173
Duchateau J (1995) Bed rest induces neural and contractile adaptations in triceps surae. Med Sci Sports Exerc 27:1581–1589
Edgerton VR, Zhou MY, Ohira Y, Klitgaard H, Jiang B, Bell G, Harris B, Saltin B, Gollnick PD, Roy RR, Kay MK, Greenisen M (1995) Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J Appl Physiol 78:1733–1739
Ferrando AA, Tipton KD, Bamman MM, Wolfe RR (1997) Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J Appl Physiol 82:807–810
Ferretti G, Berg HE, Minetti AE, Moia C, Rampichini S, Narici MV (2001) Maximal instantaneous muscular power after prolonged bed rest in humans. J Appl Physiol 90:431–435
Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204:3201–3208
Gondin J, Guette M, Maffiuletti NA, Martin A (2004) Neural activation of the triceps surae is impaired following 2 weeks of immobilization. Eur J Appl Physiol 93:359–365
Hather BM, Adams GR, Tesch PA, Dudley GA (1992) Skeletal muscle responses to lower limb suspension in humans. J Appl Physiol 72:1493–1498
Ikai M, Fukunaga T (1968) Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol 26:26–32
Kawakami Y, Akima H, Kubo K, Muraoka Y, Hasegawa H, Kouzaki M, Imai M, Suzuki Y, Gunji A, Kanehisa H, Fukunaga T (2001) Changes in muscle size, architecture, and neural activation after 20 days of bed rest with and without resistance exercise. Eur J Appl Physiol 84:7–12
Kubo K, Akima H, Kouzaki M, Ito M, Kawakami Y, Kanehisa H, Fukunaga T (2000) Changes in the elastic properties of tendon structures following 20 days bed-rest in humans. Eur J Appl Physiol 83:463–468
Larsson L, Li X, Berg HE, Frontera WR (1996) Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells. Pflugers Arch 432:320–328
LeBlanc AD, Schneider VS, Evans HJ, Pientok C, Rowe R, Spector E (1992) Regional changes in muscle mass following 17 weeks of bed rest. J Appl Physiol 73:2172–2178
LeBlanc A, Rowe R, Schneider V, Evans H, Hedrick T (1995) Regional muscle loss after short duration spaceflight. Aviat Space Environ Med 66:1151–1154
Ploutz-Snyder LL, Tesch PA, Hather BM, Dudley GA (1996) Vulnerability to dysfunction and muscle injury after unloading. Arch Phys Med Rehabil 77:773–777
Prou E, Marini JF (1997) Muscle research in space–increased muscle susceptibility to exercise-induced damage after a prolonged bedrest. Int J Sports Med 4(18 Suppl):S317–S320
Reeves NJ, Maganaris CN, Ferretti G, Narici MV (2002) Influence of simulated microgravity on human skeletal muscle architecture and function. J Gravit Physiol 9:153–154
Rittweger J, Beller G, Felsenberg D (2000) Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol 20:134–142
Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P, Felsenberg D (2005) Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 36:1019–1029
Rittweger J, Belavy D, Hunek P, Gast U, Boerst H, Feilcke B, Armbrecht G, Mulder E, Schubert H, Richardson C, de Haan A, Stegeman D, Schiessl H, Felsenberg D (2006) Highly demanding resistive vibration exercise program is tolerated during 56 days of strict bed-rest. Int J Sports Med
Roelants M, Delecluse C, Verschueren SM (2004) Whole-body-vibration training increases knee-extension strength and speed of movement in older women. J Am Geriatr Soc 52:901–908
Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604
Schneider SM, Amonette WE, Blazine K, Bentley J, Lee SM, Loehr JA, Moore AD, Jr., Rapley M, Mulder ER, Smith SM (2003) Training with the International Space Station interim resistive exercise device. Med Sci Sports Exerc 35:1935–1945
Shackelford LC, LeBlanc AD, Driscoll TB, Evans HJ, Rianon NJ, Smith SM, Spector E, Feeback DL, Lai D (2004) Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol 97:119–129
Torvinen S, Kannus P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Nenonen A, Jarvinen TL, Paakkala T, Jarvinen M, Vuori I (2003) Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res 18:876–884
Trappe SW, Trappe TA, Lee GA, Widrick JJ, Costill DL, Fitts RH (2001) Comparison of a space shuttle flight (STS-78) and bed rest on human muscle function. J Appl Physiol 91:57–64
Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19:352–359
Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19:360–369
Zange J, Muller K, Schuber M, Wackerhage H, Hoffmann U, Gunther RW, Adam G, Neuerburg JM, Sinitsyn VE, Bacharev AO, Belichenko OI (1997) Changes in calf muscle performance, energy metabolism, and muscle volume caused by long-term stay on space station MIR. Int J Sports Med 4 (18 Suppl):S308–S309
Acknowledgments
We wish to express our gratitude to the study participants. Their contribution was outstanding. Also, we wish thank the staff on “ward 18” and in the Department of Radiology of the Charité—Campus Benjamin Franklin, Mr. Arnold of the academic administration. The co-workers of the Centre for Muscle and Bone Research. Henning Soll and Bernd Johannes from the Institute Aerospace Medicine (DLR in Hamburg) were a delightful support in the recruitment process. Bernd Langkabel from Novotec Medical granted valuable technical support and Henriëtte van Olst from the Faculty of Human Movement Sciences (VU, Amsterdam) contributed in the analysis of the MRI data.
Author information
Authors and Affiliations
Corresponding author
Additional information
Grants
The BBR study was supported by grant 14431/02/NL/SH2 from the European Space Agency. The study was further sponsored by Charité—University Medicine Berlin (Campus Benjamin Franklin), DLR (German AeroSpace), MSD Sharp & Dohme, Lilly Germany, Servier Germany, Hoffmann-LaRoche, Siemens, Novartis, and Seca.
Rights and permissions
About this article
Cite this article
Mulder, E.R., Stegeman, D.F., Gerrits, K.H.L. et al. Strength, size and activation of knee extensors followed during 8 weeks of horizontal bed rest and the influence of a countermeasure. Eur J Appl Physiol 97, 706–715 (2006). https://doi.org/10.1007/s00421-006-0241-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00421-006-0241-6