A single open sea air dive increases pulmonary artery pressure and reduces right ventricular function in professional divers

Abstract

After decompression from dives, bubbles are frequently observed in the right ventricular outflow tract and may lead to vascular damage, pulmonary arterial hypertension and right ventricular overload. No data exist on the effect of open sea diving on the pulmonary artery pressure (PAP). Eight professional divers performed an open sea air dive to 30 msw. Before and postdive a Doppler echocardiographic study was undertaken. Systolic pulmonary artery pressure (SPAP) was estimated from measurement of peak flow velocity of the tricuspid regurgitant jet; the ratio between pulmonary artery acceleration times (AccT) and right ventricular ejection time (RVET) was used as an estimate of the mean PAP. No evidence of either patent foramen ovale or intra-pulmonary shunt was found in any subject postdive after performing a Valsalva maneuver. SPAP increased from 25 ± 3 to 33 ± 2 mmHg and AccT/RVET ratio decreased from 0.44 ± 0.04 to 0.3 ± 0.02 20 min after the dive, respectively. Pulmonary vascular resistance increased from 1.2 ± 0.1 to 1.4 ± 0.1 Woods Units. Postdive right ventricle end-diastolic and end-systolic volumes were increased for about 19% (P = 0.001) and 33% (P = 0.001) and right ejection fraction decreased about for 6% (P = 0.001). Cardiac output decreased from 4.8 ± 0.9 (l min−1) to 4.0 ± 0.6 at 40 min postdive due to decreases in heart rate and stroke volume. This study shows that a single open sea dive may be associated with right heart overload due to increased pressure in the pulmonary artery.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ (2003) A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol 41:1021–1027

    PubMed  Article  Google Scholar 

  2. Arborelius M Jr, Ballidin UI, Lilja B, Lundgren CE (1972) Hemodynamic changes in man during immersion with the head above water. Aerosp Med 43:592–598

    PubMed  Google Scholar 

  3. Balestra C, Germonpre P, Marroni A (1998) Intrathoracic pressure changes after Valsalva strain and other maneuvers: implications for divers with patent foramen ovale. Undersea Hyperb Med 25:171–174

    PubMed  CAS  Google Scholar 

  4. Behnke AR (1951) Decompression sickness following exposure to high pressures. In: Fulton JF (ed) Decompression sickness. Saunders, Philadelphia, pp 53–89

    Google Scholar 

  5. Bove AA, Hallenbeck JM, Elliott DH (1974) Circulatory responses to venous air embolism and decompression sickness in dogs. Undersea Biomed Res 1:207–220

    PubMed  CAS  Google Scholar 

  6. Brubakk AO, Duplančić D, Valic Z, Palada I, Obad A, Baković D, Wisloff U, Dujić Ž (2005) A single air dive reduces arterial endothelial function in man. J Physiol 566:901–906

    PubMed  Article  CAS  Google Scholar 

  7. Butler BD, Conkin J, Luehr S (1989) Pulmonary hemodynamics, extravascular lung water and residual gas bubbles following low dose venous gas emboli. Aviat Space Environ Med 60:1178–1182

    PubMed  CAS  Google Scholar 

  8. Butler BD, Robinson R, Little T, Chelly JE, Doursout MF (1996) Cardiopulmonary changes with moderate decompression in rats. Undersea Hyperb Med 23:83–89

    PubMed  CAS  Google Scholar 

  9. Campana C, Pasotti M, Monti L, Revera M, Serio A, Nespoli L, Magrini G, Scelsi L, Ghio S, Tavazzi L (2004) The evaluation of right ventricular performance in different clinical models of heart failure. Eur Heart J 6: F61–F67

    Article  Google Scholar 

  10. Diesel DD, Ryles MT, Pilmanis AA, Balldin UI (2002) Non-invasive measurement of pulmonary artery pressure in humans with simulated altitude-induced venous gas emboli. Aviat Space Environ Med 73:128–133

    PubMed  Google Scholar 

  11. Douglas PS, Berman GO, O’Toole ML, Hiller WD, Reicher N (1989) Prevalence of multivalvular regurgitation in atheletes. Am J Cardiol 64:209–212

    PubMed  Article  CAS  Google Scholar 

  12. Dujić Ž, Baković D, Marinović-Terzić I, Eterović D (2005a) Acute effects of single open-sea air dive and post-dive posture on cardiac output and pulmonary gas exchange in recreational divers. Br J Sports Med 39: e24

    Article  Google Scholar 

  13. Dujić Ž, Palada I, Obad A, Duplančić D, Baković D, Valic Z (2005b) Exercise during three minute decompression stop reduces postdive venous gas bubbles in the field diving. Med Sci Sports Exerc 37:1319–1323

    Article  Google Scholar 

  14. Dujić Ž, Palada I, Obad A, Duplančić D, Brubakk AO, Valic Z (2005c) Exercise-induced intrapulmonary shunting of venous gas emboli does not occur after open sea diving. J Appl Physiol 99:944–949

    Article  Google Scholar 

  15. Eftedal O, Brubakk AO (1997) Agreement between trained and untrained observers in grading intravascular bubble signals in ultrasonic images. Undersea Hyperb Med 24:293–299

    PubMed  CAS  Google Scholar 

  16. Eldridge MW, Dempsey JA, Havenkamp HC, Lovering AT, Hokanson JS (2004) Exercise-induced intrapulmonary arteriovenous shunting in healthy humans. J Appl Physiol 97:797–805

    PubMed  Article  Google Scholar 

  17. Flook V (1997) The effect of exercise on decompression bubbles. A theoretical study. In: Mekjavic IB, Tipton MJ, Eiken O (eds) Proceedings of the XXIII annual scientific meeting of the European Underwater and Baromedical Societ. Bled, Slovenia, pp 55–61

  18. Kitabatake A, Inous A, Asao M, Masuyama T, Tanoucji J, Morita T, Mishima M, Uematsu M, Shizaku T, Hori M, Abe H (1983) Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation 68:302–309

    PubMed  CAS  Google Scholar 

  19. Kerut EK, Norfleet WT, Plotnick GD, Giles TD (2001) Patent foramen ovale: a review of associated conditions and the impact of physiological size. J Am Coll Cardiol 38:613–623

    PubMed  Article  CAS  Google Scholar 

  20. Landmesser U, Drexler H (2005) The clinical significance of endothelial dysfunction. Curr Opin Cardiol 20:547–551

    PubMed  Article  Google Scholar 

  21. Malik AB (1983) Pulmonary microembolization. Physiol Rev 63:1114–1207

    PubMed  CAS  Google Scholar 

  22. Marabotti C, Chiesa F, Scalzini A, Antonelli F, Lari R, Franchini C, Data PG (1999) Cardiac and humoral changes induced by recreational scuba diving. Undersea Hyperb Med 26:151–158

    PubMed  CAS  Google Scholar 

  23. Meyer K, Bucking J (2004) Exercise in heart failure: should aqua therapy and swimming be allowed? Med Sci Sports Exerc 36:2017–2023

    PubMed  Article  Google Scholar 

  24. Moon RE, Camporesi EM, Kisslo JA (1989) Patent foramen ovale and decompression sickness in divers. Lancet 1:513–514

    PubMed  Article  CAS  Google Scholar 

  25. Nishi RY (1990) Doppler evaluation of decompression tables. In: Lin YC, Shida KK (eds) Man in the sea. University of Hawaii Press, Honolulu, pp 297–316

    Google Scholar 

  26. Nishi R, Brubakk AO, Eftedal O (2003) Bubble detection. In: Brubakk AO, Neumann TS (eds) Bennet and Elliot’s physiology and medicine of diving, 5th, ed W.B. Saunders, London, pp 501–529

    Google Scholar 

  27. Nossum V, Brubakk AO (1999) Endothelial damage by bubbles in the pulmonary artery of the pig. Undersea Hyperb Med 26:1–8

    PubMed  CAS  Google Scholar 

  28. Nossum V, Hjelde A, Brubakk AO (2002) Small amounts of venous gas embolism cause delayed impairment of endothelial function and increase polymorphonuclear neutrophil infiltration. Eur J Appl Physiol 86:209–214

    PubMed  Article  CAS  Google Scholar 

  29. Pons M, Blickenstorfer D, Oechslin E, Hold G, Greminger P, Franzeck UK, Russi EW (1995) Pulmonary oedema in healthy persons during scuba-diving and swimming. Eur Respir J 8:762–767

    PubMed  CAS  Google Scholar 

  30. Risch WD, Koubenec HJ, Beckmann U, Lange S, Gauer OH (1978) The effect of graded immersion on heart volume, central venous pressure, pulmonary blood distribution, and heart rate in man. Pflugers Arch 374:115–118

    PubMed  Article  CAS  Google Scholar 

  31. Singh JP, Evans JC, Levy D, Larson MG, Freed LA, Fuller DL, Lehman B, Benjamin EJ (1999) Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol 83:897–902

    PubMed  Article  CAS  Google Scholar 

  32. US Navy diving manual (1996) Direction of Commander, Naval Sea System Command vol I (air diving)

  33. Valic Z, Duplančić D, Baković D, Ivančev V, Eterović D, Wisløff U, Brubakk AO, Dujić Ž (2005) Diving-induced venous gas emboli do not change pulmonary artery pressure. Int J Sports Med 26:626–631

    PubMed  Article  CAS  Google Scholar 

  34. Vik A, Brubakk AO, Hennessy TR, Jenssen BM, Ekker M, Slordahl SA (1990) Venous air embolism in swine: transport of gas bubbles through the pulmonary circulation. J Appl Physiol 69:237–244

    PubMed  CAS  Google Scholar 

  35. Vik A, Jensen BM, Eftedal O, Brubakk AO (1993) Relationship between venous bubbles and hemodynamic responses after decompression in pigs. Undersea Hyperb Med 20:233–248

    PubMed  CAS  Google Scholar 

  36. Yock PG, Popp RL (1984) Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 70:657–662

    PubMed  CAS  Google Scholar 

  37. Wilmshurst PT, Byrne JC, Webb-Peploe MM (1989) Relation between interatrial shunts and decompression sickness in divers. Lancet 2:1302–1306

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Croatian Ministry of Science, Education and Sports, Grant No. 216006 and by the Norwegian Petroleum Dierctorate, Norsk Hydro, Esso Norge and Statoil under the ‘Dive contingency contract no 4600002328’ with Norwegian Underwater Intervention. Authors would like to thank Aleksandra Mišak for the editing of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Željko Dujić.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dujić, Ž., Obad, A., Palada, I. et al. A single open sea air dive increases pulmonary artery pressure and reduces right ventricular function in professional divers. Eur J Appl Physiol 97, 478–485 (2006). https://doi.org/10.1007/s00421-006-0203-z

Download citation

Keywords

  • Diving
  • Pulmonary artery pressure
  • Professional
  • Cardiac output
  • Gas bubbles