Skip to main content

ACE Genotype May Have an Effect on Single versus Multiple Set Preferences in Strength Training

Abstract

A polymorphic variant of the human angiotensin converting enzyme (ACE) gene was identified. The ’D’ (rather than ‘I’) variant was associated with improvements in strength related to physical training. We set out to determine whether the response to different patterns of strength training might also differ. Ninty-nine Caucasian male non-elite athletes were randomly allocated into one of three groups: 31 non-training/control (CG: 31), single-set (SSG: 35) and multiple-set (MSG: 33). SSG and MSG trained three times a week for 6 weeks. Both training groups were underwent a strength-training program with two mesocycles (12–15 repetition maximum (RM) and 8–12 RM mesocycles). One RM loads in half squat and bench press were assessed before training and after the first and second mesocycles. ACE polymorphisms analysed by polymerase chain reaction (PCR) methods. Subjects with ACE II genotype in the MST group had improved strength development in 12–15 RM, while SST and MST groups had similar gains in 8–12 RM. Subjects with ACE DD genotype in both the SSG and the MSG had similar benefits from both 12–15 RM and 8–12 RM. Strength gains for subjects with ACE ID genotype in the SSG were similar to MSG gains in response to 8–12 RM loads but not with 12–15 RM loads. Additionally, subjects with DD genotype had superior strength gains in both strength training groups. Tailoring strength training programmes (single-set vs. multiple set) according to the athlete’s ACE genotype may be advantageous.

This is a preview of subscription content, access via your institution.

References

  1. Alvarez R, Terrados N, Ortalano R, Iglesias-Cubero G, Requero JR, Batalla A, Cortina A (2000) Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol 82(1–2):117–120

    Article  CAS  PubMed  Google Scholar 

  2. Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610–H618

    CAS  PubMed  Google Scholar 

  3. Brzycki M (1993) Strength testing: predicting a one-rep max from a reps-to-fatigue. JOPERD 64 (1):88–90

    Google Scholar 

  4. Butler R, Morris AD, Burchell B, Struthers AD (1999) DD angiotensin-converting enzyme gene polymorphism is associated with endothelial dysfunction in normal humans. Hypertension 33:1164–1168

    CAS  PubMed  Google Scholar 

  5. Carpinelli SN (2002) Berger in retrospect: effect of varied weight training programmes on strength. Br J Sports Med 36:319–324

    Article  CAS  PubMed  Google Scholar 

  6. Costerousse O, Danilov S, Alhenc-Gelas F (1997) Genetics of angiotensin I-converting enzyme. Clin Exp Hypertens 19:659–669

    CAS  PubMed  Google Scholar 

  7. Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM (1991) Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 68:450–456

    CAS  PubMed  Google Scholar 

  8. Danser AHJ, Schalekamp MADH, Bax VA, van den Brink AM, Saxena PR, Reigger GAJ, Schunkert H (1995) Angiotensin converting enzyme in the human heart: effect of the deletion/insertion polymorphism. Circulation 92:1387–1388

    CAS  PubMed  Google Scholar 

  9. De Sousa E, Veksler V, Bigard X, Mateo P, Ventura-Clapier R (2000) Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle. Circulation 102:1847–1853

    CAS  PubMed  Google Scholar 

  10. Drexler H, Banhardt U, Meinertz T, Wollschlager H, Lehmann M, Just H (1989) Contrasting peripheral short-term and long-term effects of converting enzyme inhibition in patients with congestive heart failure. A double-blind, placebo-controlled trial. Circulation 79(3):491–502

    CAS  PubMed  Google Scholar 

  11. Drexler H, Munzel T, Riede U, Just H (1991) Adaptive changes in the periphery and their therapeutic consequences. Am J Cardiol 67:29C–34C

    Article  CAS  PubMed  Google Scholar 

  12. Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759

    CAS  PubMed  Google Scholar 

  13. Fleck SJ, Kraemer WJ (2004) Designing resistance training programs. human kinetics, 3rd edn. Campaign, pp 83–99

  14. Folland J, Leach B, Little T, Hawker K, Myerson S, Montgomery H, Jones D (2000) Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload. Exp Physiol 85:575–579

    Article  CAS  PubMed  Google Scholar 

  15. Gayagay G, Yu B, Hambly B, Boston T, Hahn A, Celermajer DS, Trent RJ (1998) Elite endurance athletes and the ACE I allele-the role of genes in athletic performance. Hum Genet 103:48–50

    Article  CAS  PubMed  Google Scholar 

  16. Goossens GH, Blaak EE, Saris WH, van Baak MA (2004) Angiotensin II-induced effects on adipose and skeletal muscle tissue blood flow and lipolysis in normal-weight and obese subjects. J Clin Endocrinol Metab 89(6):2690–2696

    Article  CAS  PubMed  Google Scholar 

  17. Gordon S, Davis BS, Carlson CJ, Booth FW (2001) Ang II is required for optimal overload-induced skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 280:E150–E159

    CAS  PubMed  Google Scholar 

  18. Griffin SA, Brown WC, MacPherson F, McGrath JC, Wilson VG, Korsgaard N, Mulvany MJ, Lever AF (1991) Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension (Dallas) 17:626–635

    CAS  Google Scholar 

  19. Henriksen EJ, Jacob S (1995) Effects of captopril on glucose transport activity in skeletal muscle of obese Zucker rats. Metabolism 44:267–272

    Article  CAS  PubMed  Google Scholar 

  20. Hopkinson NS, Nickol AH, Payne J, Hawe E, Man WD-C, Moxham J, Montgomery H, Polkey MI (2004) Angiotensin converting enzyme genotype and strength in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170:395–399

    Article  PubMed  Google Scholar 

  21. Jacob S, Henriksen EJ, Fogt DL, Dietze GJ (1996) Effects of trandolapril and verapamil on glucose transport in insulin-resistant rat skeletal muscle. Metabolism 45:535–541

    Article  CAS  PubMed  Google Scholar 

  22. Jones A, Montgomery HE, Woods DR (2002) Human performance: a role for the ACE genotype. Exerc Sport Sci Rev 30(4):184–190

    Article  PubMed  Google Scholar 

  23. Kanazawa H, Otsuka T, Hirata K, Yoshikawa J (2002) Association between the angiotensin-converting enzyme gene polymorphisms and tissue oxygenation during exercise in patients with COPD. Chest 121:697–701

    Article  CAS  PubMed  Google Scholar 

  24. Lechin M, Quinones MA, Orman A, Hill R, Yu QT, Rakowski H, Wigle D, Liew CC, Sole M, Roberts R Marian AJ (1995) Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation 92(7):1808 - 1812

    CAS  PubMed  Google Scholar 

  25. Mancini D, Davis L, Wexler JP, Chadwick B, LeJemtel TH (1987) Dependence of enhanced maximal exercise performance on increased peak skeletal muscle perfusion during long-term captopril therapy in heart failure. Am Coll Cardiol 10:845–850

    CAS  Google Scholar 

  26. Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38:947–954

    Article  CAS  PubMed  Google Scholar 

  27. Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P (1998) Human gene for physical performance. Nature 393:221–222

    Article  CAS  PubMed  Google Scholar 

  28. Montgomery H, Brull D, Humphries SE (2002) Analysis of gene-environment interactions by “stressing-the-genotype” studies: the angiotensin converting enzyme and exercise-induced left ventricular hypertrophy as an example. Ital Heart J 3(1):10–14

    PubMed  Google Scholar 

  29. Montgomery HE, Clarkson P, Dollery CM, Prasad K, Losi MA, Hemingway H, Statters D, Jubb M, Girvain M, Varnava A, World M, Deanfield J, Talmud P, McEwan JR, McKenna WJ, Humphries S (1997) Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 96(3):741–747

    CAS  PubMed  Google Scholar 

  30. Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H (1999) Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol 87(4):1313–1316

    CAS  PubMed  Google Scholar 

  31. Myerson SG, Montgomery HE, Whittingham M, Jubb M, World MJ, Humphries SE, Pennell DJ (2001) Left ventricular hypertrophy with exercise and ACE gene insertion/deletion polymorphism—a randomized controlled trial with losartan. Circulation 103(2):226–230

    CAS  PubMed  Google Scholar 

  32. Nazarov IB, Woods DR, Montgomery HE, Shneirder OV, Kazakov VI, Tomilin NV, Rogozkin VA (2001) The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet 9(10):797–801

    Article  CAS  PubMed  Google Scholar 

  33. Pasha MAQ, Khan AP, Kumar R, Grover SK, Ram RB, Norboo T, Srivastava KK, Selvamurthy W, Brahmachari SK (2001) Angiotensin converting enzyme insertion allele in relation to high altitude adaptation. Ann Hum Genet 65:531–536

    Article  PubMed  Google Scholar 

  34. Prasad N, O’Kane KP, Johnstone HA, Wheeldon NM, McMahon AD, Webb DJ, MacDonald TM (1994) The relationship between blood pressure and left ventricular mass in essential hypertension is observed only in the presence of the angiotensin converting enzyme deletion allele. Q J Med 87:659–662

    CAS  Google Scholar 

  35. Rattigan S, Dora KA, Tong AC, Clark MG (1996) Perfused skeletal muscle contraction and metabolism improved by angiotensin II-mediated vasoconstriction. Am J Physiol Endocrinol Metab 271:E96–E103

    CAS  Google Scholar 

  36. Rigat B, Hubert C, Corvol P, Soubrier F (1992) PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res 20:1433

    CAS  Google Scholar 

  37. Shanmugam V, Sell KW, Saha BK (1993) Mistyping ACE heterozygotes. PCR Methods Appl 3:120–121

    CAS  PubMed  Google Scholar 

  38. Townsend RR and DiPette DJ (1993) Pressor doses of angiotensin II increase insulin-mediated glucose uptake in normotensive men. Am JPhysiol Endocrinol Metab 265(28):E362-E366

    CAS  Google Scholar 

  39. Tsianos G, Sanders J, Dhamrait S, Humphries S, Grant S, Montgomery H (2004) The ACE gene insertion/deletion polymorphism and elite endurance swimming. Eur J Appl Physiol 92(3):360–362

    Article  CAS  PubMed  Google Scholar 

  40. Wolfe BL, LeMura LM, Cole PJ (2004) Quantitative analysis of single- vs. multiple-set programs in resistance training. J Strength Cond Res 18(1):35–47

    Article  PubMed  Google Scholar 

  41. Woods D, Hickman M, Jamshidi Y, Brull D, Vassiliou V, Jones A, Humphries S, Montgomery H (2001) Elite swimmers and the D allele of the ACE I/D polymorphism. Hum Genet 108:230–232

    Article  CAS  PubMed  Google Scholar 

  42. Woods DR, Pollard AJ, Collier DJ, Jamshidi Y, Vassiliou V, Hawe E, Humpries SE, Montgomery HE (2002) Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene and arterial oxygen saturation at high altitude. Am J Res Crit Care Med 166(3):362–366

    Article  Google Scholar 

  43. Zhang B, Tanaka H, Shono N, Miura S, Kiyonaga A, Shindo M, Saku K (2003) The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet 63(2):139–144

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muzaffer Colakoglu.

Additional information

Statements: 1) This manuscript has not been submitted elsewhere for publication. 2) All authors have read and approved of the manuscript, and have contributed significantly to the research of the submitted manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colakoglu, M., Cam, F.S., Kayitken, B. et al. ACE Genotype May Have an Effect on Single versus Multiple Set Preferences in Strength Training. Eur J Appl Physiol 95, 20–26 (2005). https://doi.org/10.1007/s00421-005-1335-2

Download citation

Keywords

  • Resistance training systems
  • Training volume
  • Training intensity
  • ACE polymorphism
  • Genetics