Skip to main content

Linear decrease in \(\dot V\hbox{O}_{2\max}\) and performance with increasing altitude in endurance athletes

Abstract

It has been hypothesized that one reason for decreased \(\dot V\hbox{O}_{2\max}\) in hypoxia could be the lower maximal exercise intensity achieved in incremental, time or distance trial tests. We hypothesized that (1) \(\dot V\hbox{O}_{2\max}\) would be decreased at altitude even when exercising at the same absolute maximal exercise intensity as at sea level and; (2) the decline in \(\dot V\hbox{O}_{2\max}\) in endurance-trained athletes (ETA) would be linear across the range from sea level through moderate altitudes. Eight ETA performed combined \(\dot V\hbox{O}_{2\max}\) and performance tests running to exhaustion at the same speed in a randomized double blind fashion at simulated altitudes of 300, 800, 1,300, 1,800, 2,300 and 2,800 m above sea level using a hypobaric chamber. Douglas bag system was used for respiratory measurements and pulse oximetry was used to estimate arterial O2 saturation. \(\dot V\hbox{O}_{2\max}\) declined linearly from 66±1.6 ml kg−1 min−1 at 300 m to 55±1.6 ml  kg−1 min−1 at 2,800 m corresponding to a 6.3% decrease per 1,000 m increasing altitude (range 4.6–7.5%). Time to exhaustion (performance) at a constant velocity associated with 107% of sea level \(\dot V\hbox{O}_{2\max}\) decreased with 14.5% (P<0.001) per 1,000 m altitude between 300 and 2,800 m. Both \(\dot V\hbox{O}_{2\max}\) and performance decreased from 300 to 800 m (P<0.01; P<0.05). Arterial haemoglobin oxygen saturation at test cessation (SpO2min) declined from 89.0±2.9% at 300 m to 76.5±4.0% at 2,800 m (P=0.001). This study report that in ETA during acute exposure to altitude both performance and \(\dot V\hbox{O}_{2\max}\) decline from 300 to 800 m above sea level and continued to decrease linearly to 2,800 m.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Billat VL, Lepretre PM, Heubert RP, Koralsztein JP, Gazeau FP (2003) Influence of acute moderate hypoxia on time to exhaustion at vVO2max in unacclimatized runners. Int J Sport Med 24:9–14

    Article  CAS  Google Scholar 

  2. Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP (1967) Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol 23:259–266

    PubMed  CAS  Google Scholar 

  3. Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B (2003) Determinants of maximal oxygen uptake in severe acute hypoxia. Am J Physiol Regul Integr Comp Physiol 284:R291–R303

    PubMed  CAS  Google Scholar 

  4. Chapman RF, Emery M, Stager JM (1999) Degree of arterial desaturation in normoxia influences VO2max decline in mild hypoxia. Med Sci Sport Exerc 31:658–663

    Article  CAS  Google Scholar 

  5. Ferretti G, Moia C, Thomet JM, Kayser B (1997) The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Physiol 498(Pt 1):231–237

    PubMed  CAS  Google Scholar 

  6. Friedmann F, Bauer T, Menold E, Bartsch P (2004) Exercise with the intensity of the individual anaerobic threshold in acute hypoxia. Med Sci Sport Exerc 36:1737–1742

    Article  Google Scholar 

  7. Fulco CS, Lewis SF, Frykman PN, Boushel R, Smith S, Harman EA, Cymerman A, Pandolf KB (1996) Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia. J Appl Physiol 81:1891–1900

    PubMed  CAS  Google Scholar 

  8. Fulco CS, Rock PB, Cymerman A (1998) Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med 69:793–801

    PubMed  CAS  Google Scholar 

  9. Gavin TP, Derchak PA, Stager JM (1998) Ventilation’s role in the decline in VO2max and SaO2 in acute hypoxic exercise. Med Sci Sport Exerc 30:195–199

    CAS  Google Scholar 

  10. Gore CJ, Hahn AG, Scroop GC, Watson DB, Norton KI, Wood RJ, Campbell DP, Emonson DL (1996) Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J Appl Physiol 80:2204–2210

    PubMed  CAS  Google Scholar 

  11. Gore CJ, Little SC, Hahn AG, Scroop GC, Norton KI, Bourdon PC, Woolford SM, Buckley JD, Stanef T, Campbell DP, Watson DB, Emonson DL (1997) Reduced performance of male and female athletes at 580 m altitude. Eur J Appl Physiol Occup Physiol 75:136–143

    PubMed  Article  CAS  Google Scholar 

  12. Grover RF, Weil JV, Reeves JT (1986) Cardiovascular adaptation to exercise at high altitude. Exerc Sport Sci Rev 14:269–302

    PubMed  Article  CAS  Google Scholar 

  13. Harms CA, Stager JM (1995) Low chemoresponsiveness and inadequate hyperventilation contribute to exercise-induced hypoxemia. J Appl Physiol 79:575–580

    PubMed  CAS  Google Scholar 

  14. Ibanez J, Rama R, Riera M, Prats MT, Palacios L (1993) Severe hypoxia decreases oxygen uptake relative to intensity during submaximal graded exercise. Eur J Appl Physiol Occup Physiol 67:7–13

    PubMed  Article  CAS  Google Scholar 

  15. Knuttgen HG, Saltin B (1973) Oxygen uptake, muscle high-energy phosphates, and lactate in exercise under acute hypoxic conditions in man. Acta Physiol Scand 87:368–376

    PubMed  CAS  Article  Google Scholar 

  16. Koistinen P, Takala T, Martikkala V, Leppaluoto J (1995) Aerobic fitness influences the response of maximal oxygen uptake and lactate threshold in acute hypobaric hypoxia. Int J Sport Med 16:78–81

    Article  CAS  Google Scholar 

  17. Lawler J, Powers SK, Thompson D (1988) Linear relationship between VO2max and VO2max decrement during exposure to acute hypoxia. J Appl Physiol 64:1486–1492

    PubMed  CAS  Google Scholar 

  18. Manohar M, Goetz TE, Hassan AS (2004) NaHCO3 does not affect arterial O2 tension but attenuates desaturation of hemoglobin in maximally exercising thoroughbreds. J Appl Physiol 96: 1349–1356

    PubMed  Article  CAS  Google Scholar 

  19. Nielsen HB, Bredmose PP, Stromstad M, Volianitis S, Quistorff B, Secher NH (2002) Bicarbonate attenuates arterial desaturation during maximal exercise in humans. J Appl Physiol 93:724–731

    PubMed  Google Scholar 

  20. Noakes TD, Peltonen JE, Rusko HK (2001) Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. J Exp Biol 204:3225–3234

    PubMed  CAS  Google Scholar 

  21. Paterson DJ, Pinnington H, Pearce AR, Morton AR (1987) Maximal exercise cardiorespiratory responses of men and women during acute exposure to hypoxia. Aviat Space Environ Med 58:243–247

    PubMed  CAS  Google Scholar 

  22. Peltonen JE, Rantamaki J, Niittymaki SP, Sweins K, Viitasalo JT, Rusko HK (1995) Effects of oxygen fraction in inspired air on rowing performance. Med Sci Sport Exerc 27:573–579

    CAS  Google Scholar 

  23. Peltonen JE, Leppavuori AP, Kyro KP, Makela P, Rusko HK (1999) Arterial haemoglobin oxygen saturation is affected by F(I)O2 at submaximal running velocities in elite athletes. Scand J Med Sci Sport 9:265–271

    CAS  Article  Google Scholar 

  24. Peltonen JE, Tikkanen HO, Rusko HK (2001) Cardiorespiratory responses to exercise in acute hypoxia, hyperoxia and normoxia. Eur J Appl Physiol 85:82–88

    PubMed  Article  CAS  Google Scholar 

  25. Powers SK, Dodd S, Lawler J, Landry G, Kirtley M, McKnight T, Grinton S (1988) Incidence of exercise induced hypoxemia in elite endurance athletes at sea level. Eur J Appl Physiol Occup Physiol 58:298–302

    PubMed  Article  CAS  Google Scholar 

  26. Powers SK, Lawler J, Dempsey JA, Dodd S, Landry G (1989) Effects of incomplete pulmonary gas exchange on VO2max. J Appl Physiol 66:2491–2495

    PubMed  CAS  Google Scholar 

  27. Robergs RA, Quintana R, Parker DL, Frankel CC (1998) Multiple variables explain the variability in the decrement in VO2max during acute hypobaric hypoxia. Med Sci Sport Exerc 30:869–879

    Article  CAS  Google Scholar 

  28. Rowell LB, Blackmon JR (1987) Human cardiovascular adjustments to acute hypoxaemia. Clin Physiol 7:349–376

    PubMed  CAS  Google Scholar 

  29. Squires RW, Buskirk ER (1982) Aerobic capacity during acute exposure to simulated altitude, 914 to 2286 meters. Med Sci Sport Exerc 14:36–40

    CAS  Google Scholar 

  30. Terrados N, Mizuno M, Andersen H (1985) Reduction in maximal oxygen uptake at low altitudes; role of training status and lung function. Clin Physiol 5(Suppl 3):75–79

    PubMed  Google Scholar 

  31. Warren GL, Cureton KJ, Middendorf WF, Ray CA, Warren JA (1991) Red blood cell pulmonary capillary transit time during exercise in athletes. Med Sci Sport Exerc 23:1353–1361

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Jan Erlend Hem and Svein Leirstein for excellent technical assistance during the experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jon Peter Wehrlin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wehrlin, J.P., Hallén, J. Linear decrease in \(\dot V\hbox{O}_{2\max}\) and performance with increasing altitude in endurance athletes. Eur J Appl Physiol 96, 404–412 (2006). https://doi.org/10.1007/s00421-005-0081-9

Download citation

Keywords

  • Hypoxia
  • Time to exhaustion
  • Oxygen uptake
  • Arterial oxygen saturation
  • Exercise