Skip to main content
Log in

Activation characteristics of shoulder muscles during maximal and submaximal efforts

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Determination of individual maximum voluntary contraction (MVC) force is used as the gold standard for normalising surface EMG (SEMG) data. Assuming a linear amplitude–force relationship, individual strain levels are defined according to percentage rates of the measured MVC levels. The purpose of the study was to investigate if the assumed force–strain relationship can be applied without qualification. Therefore, healthy volunteers (nine men, ten women) were investigated during isometric exercises of shoulder muscles at MVC and 50% levels. Tasks were performed at four different angular positions in frontal, sagittal and horizontal planes. In each plane, both possible force directions were investigated. SEMG was taken simultaneously from 13 muscles of the shoulder and upper arms from both sides of the body. At a force level of 50% MVC, SEMG amplitude levels were compared to the expected 50% level. Differences in muscular co-ordination patterns were also determined. During retroversion and horizontal flexion, amplitude levels significantly remained at levels below 50%. This was seen for all the muscles investigated, independent of relative contribution to force production. During horizontal extension and abduction, the main force-producing muscles showed amplitude levels that significantly exceeded the expected 50% level. Co-ordination patterns differed significantly between MVC and submaximal conditions for anteversion, retroversion and horizontal extension. Specifically, four shoulder muscles showed higher proportions at the 50% level compared to MVC. Therefore, certain percentage rates of MVC force levels exhibit quite different strain rates, as identified by SEMG. Depending on force direction, differences in co-ordination patterns exist between MVC and submaximal test conditions. Both findings have implications for therapeutic and training applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aaras A, Veierod MB, Larsen S, Ortengren R, Ro O (1996) Reproducibility and stability of normalized EMG measurements on musculus trapezius. Ergonomics 39:171–185

    CAS  PubMed  Google Scholar 

  • Alkner BA, Tesch PA, Berg HE (2000) Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sports Exerc 32:459–463

    Article  CAS  PubMed  Google Scholar 

  • Anders C, Sprott H, Scholle HC (2001) Surface EMG of the lumbar part of the erector trunci muscle in patients with fibromyalgia. Clin Exp Rheumatol 19:453–455

    CAS  PubMed  Google Scholar 

  • Anders C, Bretschneider S, Schneider W (2003) SEMG amplitude—dependency from force level and muscle length. Pflugers Arch 445:S75

    Google Scholar 

  • Anders C, Bretschneider S, Bernsdorf A, Erler K, Schneider W (2004) Depending on muscle length identical muscular strain causes different muscular activation levels. Phys Med Rehab Kuror 14:171–178

    Google Scholar 

  • Becher JG, Harlaar J, Lankhorst GJ, Vogelaar TW (1998) Measurement of impaired muscle function of the gastrocnemius, soleus, and tibialis anterior muscles in spastic hemiplegia: a preliminary study. J Rehabil Res Dev 35:314–326

    CAS  PubMed  Google Scholar 

  • Bigland Ritchie B, Jones DA, Hosking GP, Edwards RH (1978) Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clin Sci Mol Med 54:609–614

    PubMed  Google Scholar 

  • Burden AM, Trew M, Baltzopoulos V (2003) Normalisation of gait EMGs: a re-examination. J Electromyogr Kinesiol 13:519–532

    Article  CAS  PubMed  Google Scholar 

  • Clarys JP (2000) Electromyography in sports and occupational settings: an update of its limits and possibilities. Ergonomics 43:1750–1762

    Article  CAS  PubMed  Google Scholar 

  • Cram JR, Lloyd J, Cahn TS (1994) The reliability of EMG muscle scanning. Int J Psychosom 41:41–45

    CAS  PubMed  Google Scholar 

  • Crombez G, Vlaeyen JWS, Heuts P, Lysens R (1999) Pain-related fear is more disabling than pain itself: evidence on the role of pain-related fear in chronic back pain disability. Pain 80:329–339

    Article  CAS  PubMed  Google Scholar 

  • De la Barrera EJ, Milner TE (1994) The effects of skinfold thickness on the selectivity of surface EMG. Electroencephalogr Clin Neurophysiol 93:91–99

    Article  PubMed  Google Scholar 

  • De Luca CJ, Knaflitz M (1992) Surface electromyography: What’s new? CLUT, Turin

    Google Scholar 

  • Elfving B, Liljequist D, Mattsson E, Nemeth G (2002) Influence of interelectrode distance and force level on the spectral parameters of surface electromyographic recordings from the lumbar muscles. J Electromyogr Kinesiol 12:295–304

    Article  PubMed  Google Scholar 

  • Ericson MO, Nisell R, Ekholm J (1986) Quantified electromyography of lower-limb muscles during level walking. Scand J Rehabil Med 18:159–163

    CAS  PubMed  Google Scholar 

  • Esposito F, Orizio C, Veicsteinas A (1998) Electromyogram and mechanomyogram changes in fresh and fatigued muscle during sustained contraction in men. Eur J Appl Physiol 78:494–501

    Article  CAS  Google Scholar 

  • Farina D, Fosci M, Merletti R (2002) Motor unit recruitment strategies investigated by surface EMG variables. J Appl Physiol 92:235–247

    Article  PubMed  Google Scholar 

  • Gerdle B, Eriksson NE, Brundin L (1990) The behaviour of the mean power frequency of the surface electromyogram in biceps brachii with increasing force and during fatigue. With special regard to the electrode distance. Electromyogr Clin Neurophysiol 30:483–489

    CAS  PubMed  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol (Lond) 184:170–192

    Google Scholar 

  • Graham GP (1979) Reliability of electromyographic measurements after surface electrode removal and replacement. Percept Mot Skills 49:215–218

    CAS  PubMed  Google Scholar 

  • Hemingway MA, Biedermann HJ, Inglis J (1995) Electromyographic recordings of paraspinal muscles: variations related to subcutaneous tissue thickness. Biofeedback Self Regul 20:39–49

    CAS  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Merletti R, Stegeman DF, Blok J, Rau G, Disselhorst-Klug C, Hägg G (1999) European recommendations for surface electromyography, results of the SENIAM project. Roessingh Research and Development, The Netherlands

  • Hesse S (2001) Locomotor therapy in neurorehabilitation. Neurorehabilitation 16:133–139

    CAS  PubMed  Google Scholar 

  • Hogrel JY, Duchene J, Marini JF (1998) Variability of some SEMG parameter estimates with electrode location. J Electromyogr Kinesiol 8:305–315

    Article  CAS  PubMed  Google Scholar 

  • Kankaanpaa M, Taimela S, Webber CL, Airaksinen O, Hänninen O (1997) Lumbar paraspinal muscle fatigability in repetitive isoinertial loading: EMG spectral indices, Borg scale and endurance time. Eur J Appl Physiol 76:236–242

    Article  CAS  Google Scholar 

  • Kapandji IA (1984) Funktionelle Anatomie der Gelenke. Enke, Stuttgart

  • Lawrence JH, De Luca CJ (1983) Myoelectric signal versus force relationship in different human muscles. J Appl Physiol 54:1653–1659

    CAS  PubMed  Google Scholar 

  • Linssen WH, Stegeman DF, Joosten EM, van’t Hof MA, Binkhorst RA, Notermans SL (1993) Variability and interrelationships of surface EMG parameters during local muscle fatigue. Muscle Nerve 16:849–856

    CAS  PubMed  Google Scholar 

  • Luttmann A, Jäger M, Sökeland J, Laurig W (1996) Electromyographical study on surgeons in urology. II Determination of muscular fatigue. Ergonomics 39:298–313

    CAS  PubMed  Google Scholar 

  • Maganaris CN (2001) Force–length characteristics of in vivo human skeletal muscle. Acta Physiol Scand 172:279–285

    Article  CAS  PubMed  Google Scholar 

  • Mannion AF, Taimela S, Muntener M, Dvorak J (2001) Active therapy for chronic low back pain. Part 1. Effects on back muscle activation, fatigability, and strength. Spine 26:897–908

    Article  CAS  PubMed  Google Scholar 

  • McNair PJ, Depledge J, Brettkelly M, Stanley SN (1996) Verbal encouragement: effects on maximum effort voluntary muscle action. Br J Sports Med 30:243–245

    CAS  PubMed  Google Scholar 

  • Moritani T, Yoshitake Y (1998) 1998 ISEK congress keynote lecture: The use of electromyography in applied physiology. J Electromyogr Kinesiol 8:363–381

    Article  CAS  PubMed  Google Scholar 

  • Ng JK, Parnianpour M, Kippers V, Richardson CA (2003) Reliability of electromyographic and torque measures during isometric axial rotation exertions of the trunk. Clin Neurophysiol 114:2355–2361

    Article  PubMed  Google Scholar 

  • Nieminen H, Takala EP, Viikari Juntura E (1993) Normalization of electromyogram in the neck-shoulder region. Eur J Appl Physiol 67:199–207

    CAS  Google Scholar 

  • Roeleveld K, Stegeman DF, Vingerhoets HM, Van Oosterom A (1997) The motor unit potential distribution over the skin surface and its use in estimating the motor unit location. Acta Physiol Scand 161:465–472

    Article  CAS  PubMed  Google Scholar 

  • Scholle HC, Schumann NP, Anders C (1994) Quantitative-topographic and temporal characterization of myoelectrical activation pattern—New diagnostic possibilities in neurology, physiotherapy and orthopaedics. Funct Neurol 9:35–45

    CAS  PubMed  Google Scholar 

  • Schumann NP, Scholle HC, Anders C, Mey E (1994) A topographical analysis of spectral electromyographic data of the human masseter muscle under different functional conditions in healthy subjects. Arch Oral Biol 39:369–377

    Article  CAS  PubMed  Google Scholar 

  • Smith L, Zhong T, Bawa P (1995) Nonlinear behaviour of human motoneurons. Can J Physiol Pharmacol 73:113–123

    CAS  PubMed  Google Scholar 

  • Solomonow M, Baratta R, Shoji H, D’Ambrosia R (1990) The EMG–force relationships of skeletal muscle; dependence on contraction rate, and motor units control strategy. Electromyogr Clin Neurophysiol 30:141–152

    CAS  PubMed  Google Scholar 

  • Sonntag D, Uhlenbrock D, Bardeleben A, Kading M, Hesse S (2000) Gait with and without forearm crutches in patients with total hip arthroplasty. Int J Rehabil Res 23:233–243

    CAS  PubMed  Google Scholar 

  • Suzuki M, Yamazaki Y, Matsunami K (1994) Relationship between force and electromyographic activity during rapid isometric contraction in power grip. Electroencephalogr Clin Neurophysiol 93:218–224

    Article  CAS  PubMed  Google Scholar 

  • Valerius KP, Frank A, Kolster BC, Hirsch MC, Hamilton C, Lafont EA (2002) Das Muskelbuch. Funktionelle Darstellung der Muskeln des Bewegungsapparates. Hippokrates, Stuttgart

  • Viitasalo JH, Komi PV (1975) Signal characteristics of EMG with special reference to reproducibility of measurements. Acta Physiol Scand 93:531–539.

    CAS  PubMed  Google Scholar 

  • Woods JJ, Bigland-Ritchie B (1983) Linear and non-linear surface EMG/force relationships in human muscles. Am J Phys Med 62:287–299

    CAS  PubMed  Google Scholar 

  • Yang JF, Winter DA (1983) Electromyography reliability in maximal and submaximal isometric contractions. Arch Phys Med Rehabil 64:417–420

    CAS  PubMed  Google Scholar 

  • Zedka M, Kumar S, Narayan Y (1997) Comparison of surface EMG signals between electrode types, interelectrode distances and electrode orientations in isometric exercise of the erector spinae muscle. Electromyogr Clin Neurophysiol 37:439–447

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Anders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anders, C., Bretschneider, S., Bernsdorf, A. et al. Activation characteristics of shoulder muscles during maximal and submaximal efforts. Eur J Appl Physiol 93, 540–546 (2005). https://doi.org/10.1007/s00421-004-1260-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-004-1260-9

Keywords

Navigation