Skip to main content
Log in

Sustained hyperglycaemia increases muscle blood flow but does not affect sympathetic activity in resting humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

An increase in capillary blood flow and pressure in response to diabetes mellitus may lead to microangiopathy. We hypothesize that these haemodynamic changes are caused by a decreased activity of the sympathetic nervous system due to episodes of sustained hyperglycaemia. Twelve healthy volunteers consecutively underwent a hyperglycaemic experiment (HYPER), with the plasma glucose level maintained at 20 mmol.l-1 for 6 h by combined infusion of somatostatin, insulin and glucose; and a normoglycaemic experiment (NORMO), with similar infusions but with the plasma glucose maintained at fasting level. During both experiments, sympathetic nervous system (SNS) activity was measured by assessing the plasma catecholamine levels, microneurography, power spectral analysis and forearm blood flow (FBF). In an age- and weight matched group, fasting and 6-h sympathetic activity was measured without infusion of somatostatin and insulin (CONTROL). During HYPER, forearm blood flow increased from 2.45 (0.21) to 3.10 (0.48) ml.dl-1.min-1 ( P <0.05), but did not change in NORMO or CONTROL. The HYPER conditions did not change the plasma noradrenaline levels or the muscle sympathetic nerve activity [42 (4), 50 (10) and 45 (5) bursts/100 beats, HYPER, NORMO and CONTROL respectively]. Also, the power spectral analysis was similar under all experimental conditions. All results are expressed as the mean (SEM). In conclusion, sustained hyperglycaemia in normal subjects induces moderate vasodilation in skeletal muscle, but this increased blood flow can not be attributed to a decreased sympathetic tone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL (1991) Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 87:2246–2252

    CAS  PubMed  Google Scholar 

  • Beks PH, Mackaay AJ, de Vries H, de Neeling JN, Bouter LM, Heine RJ (1997) Carotid artery stenosis is related to blood glucose level in an elderly Caucasian population: the Hoorn study. Diabetologia 40:290–298

    Article  CAS  PubMed  Google Scholar 

  • Bos WJ, van Goudoever J, van Montfrans GA, van den Meiracker AH, Wesseling KH (1996) Reconstruction of brachial artery pressure from noninvasive finger pressure measurements. Circulation 94:1870–1875

    CAS  PubMed  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  • Casares S, Brumeanu TD (2001) Insights into the pathogenesis of type 1 diabetes: a hint for novel immunospecific therapies. Curr Mol Med 1:357–378

    CAS  PubMed  Google Scholar 

  • Gilligan DM, Panza JA, Kilcoyne CM, Waclawiw MA, Casino PR, Quyyumi AA (1994) Contribution of endothelium-derived nitric oxide to exercise-induced vasodilation. Circulation 90:2853–2858

    CAS  PubMed  Google Scholar 

  • Grassi G, Esler M (1999) How to assess sympathetic activity in humans. J Hypertens 17:719–734

    Article  CAS  PubMed  Google Scholar 

  • Grunwald JE, Brucker AJ, Schwartz SS, Braunstein SN, Baker L, Petrig BL, Riva CE (1990) Diabetic glycemic control and retinal blood flow. Diabetes 39:602–607

    CAS  PubMed  Google Scholar 

  • Grunwald JE, Riva CE, Petrig BL, Brucker AJ, Schwartz SS, Braunstein SN, DuPont J, Grunwald S (1995) Strict control of glycaemia: effects on blood flow in the large retinal vessels and in the macular microcirculation. Br J Ophthalmol 79:735–741

    CAS  PubMed  Google Scholar 

  • Hausberg M, Mark AL, Hoffman RP, Sinkey CA, Anderson EA (1995) Dissociation of sympathoexcitatory and vasodilator actions of modestly elevated plasma insulin levels. J Hypertens 13:1015–1021

    CAS  PubMed  Google Scholar 

  • Hawkins M, Gabriely I, Wozniak R, Vilcu C, Shamoon H, Rossetti L (2002) Fructose improves the ability of hyperglycemia per se to regulate glucose production in type 2 diabetes. Diabetes 51:606–614

    CAS  PubMed  Google Scholar 

  • Hoffman RP, Sinkey CA, Kienzle MG, Anderson EA (1993) Muscle sympathetic nerve activity is reduced in IDDM before overt autonomic neuropathy. Diabetes 42:375–380

    CAS  PubMed  Google Scholar 

  • Hoffman RP, Sinkey CA, Anderson EA (1995) Muscle sympathetic nerve activity is higher in intensively versus conventionally treated IDDM subjects. Diabetes Care 18:287–291

    CAS  PubMed  Google Scholar 

  • Hoffman RP, Hausberg M, Sinkey CA, Anderson EA (1999) Hyperglycemia without hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Diabetes Complications 13:17–22

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RP, Sinkey CA, Dopp JM, Phillips BG (2002) Lack of effect of alpha- and beta-adrenergic inhibition on forearm glucose uptake despite differences in forearm blood flow in healthy humans. Metabolism 51:1506–1513

    Article  CAS  PubMed  Google Scholar 

  • Kohner EM, Patel V, Rassam SM (1995) Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes 44:603–607

    CAS  PubMed  Google Scholar 

  • Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, Porcelli S, Maclaren N (2002) Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109:131–140

    Article  CAS  PubMed  Google Scholar 

  • Lenders J, Janssen GJ, Smits P, Thien T (1991) Role of the wrist cuff in forearm plethysmography. Clin Sci (Lond) 80:413–417

    Google Scholar 

  • Moller N, Bagger JP, Schmitz O, Jorgensen JO, Ovesen P, Moller J, Alberti KG, Orskov H (1995) Somatostatin enhances insulin-stimulated glucose uptake in the perfused human forearm. J Clin Endocrinol Metab 80:1789–1793

    Article  CAS  PubMed  Google Scholar 

  • Parati G, Saul JP, Di Rienzo M, Mancia G (1995) Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 25:1276–1286

    CAS  PubMed  Google Scholar 

  • Rongen GA, Senn BL, Ando S, Notarius CF, Stone JA, Floras JS (1997) Comparison of hemodynamic and sympathoneural responses to adenosine and lower body negative pressure in man. Can J Physiol Pharmacol 75:128–134

    Article  CAS  PubMed  Google Scholar 

  • Sandeman DD, Shore AC, Tooke JE (1992) Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. N Engl J Med 327:760–764

    CAS  PubMed  Google Scholar 

  • Schnell O, Muhr D, Weiss M, Dresel S, Haslbeck M, Standl E (1996) Reduced myocardial 123I-metaiodobenzylguanidine uptake in newly diagnosed IDDM patients. Diabetes 45:801–805

    CAS  PubMed  Google Scholar 

  • Skyrme-Jones RA, Berry KL, O’Brien RC, Meredith IT (2000) Basal and exercise-induced skeletal muscle blood flow is augmented in type I diabetes mellitus. Clin Sci (Lond) 98:111–120

    Google Scholar 

  • Stansberry KB, Shapiro SA, Hill MA, McNitt PM, Meyer MD, Vinik AI (1996) Impaired peripheral vasomotion in diabetes. Diabetes Care 19:715–721

    CAS  PubMed  Google Scholar 

  • Sun D, Huang A, Recchia FA, Cui Y, Messina EJ, Koller A, Kaley G (2001) Nitric oxide-mediated arteriolar dilation after endothelial deformation. Am J Physiol Heart Circ Physiol 280:H714–H721

    CAS  PubMed  Google Scholar 

  • Timmers HJ, Rongen GA, Karemaker JM, Wieling W, Marres HA, Lenders JW (2004) The role of carotid chemoreceptors in the sympathetic activation by adenosine in humans. Clin Sci (Lond) 106:75–82

    Google Scholar 

  • Tooke JE, Morris SJ, Shore AC (1996) Microvascular functional abnormalities in diabetes: the role of the endothelium. Diabetes Res Clin Pract [Suppl] 31:S127–S132

    Google Scholar 

  • Troni W, Carta Q, Cantello R, Caselle MT, Rainero I (1984) Peripheral nerve function and metabolic control in diabetes mellitus. Ann Neurol 16:178–183

    CAS  PubMed  Google Scholar 

  • Utriainen T, Malmstrom R, Makimattila S, Yki-Jarvinen H (1995) Methodological aspects, dose-response characteristics and causes of inter-individual variation in insulin stimulation of limb blood flow in normal subjects. Diabetologia 38:555–564

    CAS  PubMed  Google Scholar 

  • Vallet B (2002) Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med 30:S229–S234

    Article  PubMed  Google Scholar 

  • Vervoort G, Wetzels JF, Lutterman JA, van Doorn LG, Berden JH, Smits P (1999) Elevated skeletal muscle blood flow in noncomplicated type 1 diabetes mellitus: role of nitric oxide and sympathetic tone. Hypertension 34:1080–1085

    CAS  PubMed  Google Scholar 

  • Vollenweider L, Tappy L, Owlya R, Jequier E, Nicod P, Scherrer U (1995) Insulin-induced sympathetic activation and vasodilation in skeletal muscle. Effects of insulin resistance in lean subjects. Diabetes 44:641–645

    CAS  PubMed  Google Scholar 

  • Wallin BG, Fagius J (1988) Peripheral sympathetic neural activity in conscious humans. Annu Rev Physiol 50:565–576

    Article  CAS  PubMed  Google Scholar 

  • Wallin BG, Sundlof G (1979) A quantitative study of muscle nerve sympathetic activity in resting normotensive and hypertensive subjects. Hypertension 1:67–77

    CAS  PubMed  Google Scholar 

  • Weston PJ, James MA, Panerai RB, McNally PG, Potter JF, Thurston H (1998) Evidence of defective cardiovascular regulation in insulin-dependent diabetic patients without clinical autonomic dysfunction. Diabetes Res Clin Pract 42:141–148

    Article  CAS  PubMed  Google Scholar 

  • Willemsen JJ, Ross HA, Jacobs MC, Lenders JW, Thien T, Swinkels LM, Benraad TJ (1995) Highly sensitive and specific HPLC with fluorometric detection for determination of plasma epinephrine and norepinephrine applied to kinetic studies in humans. Clin Chem 41:1455–1460

    Google Scholar 

  • Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, Creager MA (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Jansen van Rosendaal, research nurse, for his technical assistance. This work was supported by a grant from the “Diabetes Fonds Nederland”. Cees J. Tack is the recipient of a fellowship of the Dutch Diabetes Foundation. The experiments performed in this study comply with current Dutch law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. van Gurp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gurp, P.J., Rongen, G.A., Lenders, J.W.M. et al. Sustained hyperglycaemia increases muscle blood flow but does not affect sympathetic activity in resting humans. Eur J Appl Physiol 93, 648–654 (2005). https://doi.org/10.1007/s00421-004-1247-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-004-1247-6

Keywords

Navigation