Skip to main content
Log in

Effects of aerobic endurance training status and specificity on oxygen uptake kinetics during maximal exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The main purpose of this study was to analyze the effects of exercise mode, training status and specificity on the oxygen uptake (O2) kinetics during maximal exercise performed in treadmill running and cycle ergometry. Seven runners (R), nine cyclists (C), nine triathletes (T) and eleven untrained subjects (U), performed the following tests on different days on a motorized treadmill and on a cycle ergometer: (1) incremental tests in order to determine the maximal oxygen uptake (O2max) and the intensity associated with the achievement ofO2max (IV̇O2max); and (2) constant work-rate running and cycling exercises to exhaustion at IV̇O2max to determine the “effective” time constant of theO2 response (τO2). Values forO2max obtained on the treadmill and cycle ergometer [R=68.8 (6.3) and 62.0 (5.0); C=60.5 (8.0) and 67.6 (7.6); T=64.5 (4.8) and 61.0 (4.1); U=43.5 (7.0) and 36.7 (5.6); respectively] were higher for the group with specific training in the modality. The U group showed the lowest values forO2max, regardless of exercise mode. Differences in τO2 (seconds) were found only for the U group in relation to the trained groups [R=31.6 (10.5) and 40.9 (13.6); C=28.5 (5.8) and 32.7 (5.7); T=32.5 (5.6) and 40.7 (7.5); U=52.7 (8.5) and 62.2 (15.3); for the treadmill and cycle ergometer, respectively]; no effects of exercise mode were found in any of the groups. It is concluded that τO2 during the exercise performed at IV̇O2max is dependent on the training status, but not dependent on the exercise mode and specificity of training. Moreover, the transfer of the training effects on τO2 between both exercise modes may be higher compared withO2max.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Babcock MA, Paterson DH, Cunningham DA (1994) Effects of aerobic endurance training on gas exchange kinetics of older man. Med Sci Sports Exerc 26:447–452

    CAS  PubMed  Google Scholar 

  • Barstow TJ, Mole PA (1991) Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J Appl Physiol 71:2099–2106

    CAS  PubMed  Google Scholar 

  • Bijker KE, Groot G, Hollander AP (2001) Delta efficiencies of running and cycling. Med Sci Sports Exerc 33:1546–1551

    Article  CAS  PubMed  Google Scholar 

  • Billat VL, Koralsztein JP (1996) Significance of the velocity at vO2max and time to exhaustion at this velocity. Sports Med 22:90–108

    CAS  PubMed  Google Scholar 

  • Billat VL, Faina M, Sardella F, Marini C, Fanton F, Lupo S, Faccini P, de Angelis M, Billat V, Flechet B, Petit B, Muriaux G, Haouzi P (1999a) The role of cadence on theO2 slow component in cycling and running in triathletes. Int J Sports Med 20:429–437

    Article  CAS  PubMed  Google Scholar 

  • Billat VL, Flechet B, Petit B, Muriaux G, Koralsztein JP (1999b) Interval training atO2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc 31:156–163

    Article  CAS  PubMed  Google Scholar 

  • Billat VL, Morton RH, Blondel N, Berthoin S, Bocquet V, Koralsztein JP, Barstow TJ (2000) Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. Eur J Appl Physiol 82:178–187

    Article  CAS  PubMed  Google Scholar 

  • Billat VL, Hamard L, Koralsztein JP (2002a) The influence of exercise duration atO2max on the off-transient pulmonary oxygen uptake phase during high intensity running activity. Arch Physiol Biochem 110:383–392

    Article  CAS  PubMed  Google Scholar 

  • Billat VL, Mille-Hamard L, Demarle A, Koralsztein JP (2002b) Effect of training in humans on off- and on-transient oxygen uptake kinetics after severe exhausting intensity runs. Eur J Appl Physiol 87:496–505

    Article  CAS  PubMed  Google Scholar 

  • Bouckaert J, Vrijens J, Pannier JL (1990) Effect of specific test procedures on plasma lactate concentration and peak oxygen uptake in endurance athletes. J Sports Med Phys Fitness 30:13–18

    CAS  PubMed  Google Scholar 

  • Boussana A, Matecki S, Galy O, Hue O, Ramonatxo M, Le Gallais D (2001) The effect of exercise modality on respiratory muscle performance in triathletes. Med Sci Sports Exerc 33:2036–2043

    Article  CAS  PubMed  Google Scholar 

  • Carter H, Jones AM, Barstow TJ, Burnley M, Williams C, Doust JH (2000a) Effect of endurance training on oxygen uptake kinetics during treadmill running. J Appl Physiol 89:1744–1752

    CAS  PubMed  Google Scholar 

  • Carter H, Jones AM, Barstow TJ, Burnley M, Williams C, Doust JH (2000b) Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol 89:899–907

    CAS  PubMed  Google Scholar 

  • Chilibeck PD, Paterson DH, Petrella RJ, Cunningham DA (1996) The influence of age and cardiorespiratory fitness on kinetics of oxygen uptake. Can J Appl Physiol 21:185–196

    CAS  PubMed  Google Scholar 

  • Clarys JP, Cabri J, Gregor RJ (1988) The muscle activity paradox during circular rhythmic leg movements. J Sports Sci 6:229–237

    CAS  PubMed  Google Scholar 

  • Demarle AP, Slawinski JJ, Laffite LP, Bocquet VG, Koralsztein JP, Billat VL (2001) Decrease of O2 deficit is a potential factor in increased time to exhaustion after specific endurance training. J Appl Physiol 90:947–953

    Article  CAS  PubMed  Google Scholar 

  • Duncan GE, Howley ET, Johnson BN (1997) Applicability ofO2max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc 29: 273–278

    CAS  PubMed  Google Scholar 

  • Edwards RH, Hill DK, Mcdonnell M (1972) Myothermal and intramuscular pressure measurements during isometric contractions of the human quadriceps muscle. J Physiol (Lond) 224:58–59

    Google Scholar 

  • Fukuoka Y, Grassi B, Conti M, Guiducci D, Sutti M, Marconi C, Cerretelli P (2002) Early effects of exercise training on on- and off-kinetics in 50-year-old subjects. Pflugers Arch 443:690–697

    Article  CAS  PubMed  Google Scholar 

  • Guedes DP (1998) Controle do peso corporal: Composição corporal, atividade física e nutrição. Midiograf, Londrina, Paraná

    Google Scholar 

  • Hagberg JM, Hickson RC, Ehsani AA, Holloszy JO (1980) Faster adjustment to and recovery from submaximal exercise in trained state. J Appl Physiol 48:218–224

    CAS  PubMed  Google Scholar 

  • Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W (1985) Justification of the 4 mmol/l lactate threshold. Int J Sports Med 6:117–130

    CAS  PubMed  Google Scholar 

  • Hill DW, Williams CS, Burt SE (1997) Responses to exercise at 92% and 100% of the velocity associated withO2max. Int J Sports Med 18:325–329

    CAS  PubMed  Google Scholar 

  • Hill DW, Poole DC, Smith JC (2002) The relationship between power and the time to achieveO2max. Med Sci Sports Exerc 34:709–714

    Article  PubMed  Google Scholar 

  • Hill DW, Halcomb JN, Stevens EC (2003) Oxygen uptake kinetics during severe intensity running and cycling. Eur J Appl Physiol 89:612–618

    Article  PubMed  Google Scholar 

  • Jeukendrup AE, Craig NP, Hawley JÁ (2000) The bioenergetics of world class cycling. J Sci Med Sport 3:414–433

    CAS  PubMed  Google Scholar 

  • Jones AM, Doust JH (1996) A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci 14:321–327

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Wilkerson DP, Burnley M, Koppo K (2003) Prior heavy exercise enhances performance during subsequent perimaximal exercise. Med Sci Sports Exerc 35:2085–2092

    PubMed  Google Scholar 

  • Lamarra N, Whipp BJ, Ward SA, Wasserman K (1987) Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol 62:2003–2012

    Article  CAS  PubMed  Google Scholar 

  • MacDonald M, Pedersen PK, Hugson RL (1997) Acceleration ofO2 kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise. J Appl Physiol 83:1318–1325

    CAS  PubMed  Google Scholar 

  • McArdle WD, Katch FI, Pechar GS (1973) Comparison of continuous and discontinuous treadmill and bicycle tests for maxO2. Med Sci Sports 5:156–160

    CAS  PubMed  Google Scholar 

  • McLaughlin JE, King GA, Howley ET, Bassett DR Jr, Ainsworth BE (2001) Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med 22:280–284

    Article  CAS  PubMed  Google Scholar 

  • Norris SR, Petersen SR (1998) Effects of endurance training on transient oxygen uptake responses in cyclists. J Sports Sci 16:733–738

    Article  CAS  PubMed  Google Scholar 

  • Perrey S, Betik A, Candau R, Rouillon JD, Hughson RL (2001) Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise. J Appl Physiol 91:2135–2142

    CAS  PubMed  Google Scholar 

  • Phillips SM, Green HJ, Macdonald MJ, Hughson RL (1995) Progressive effect of endurance training onO2 kinetics at the onset of submaximal exercise. J Appl Physiol 79:1914–1920

    CAS  PubMed  Google Scholar 

  • Powers SK, Dodd S, Beadle RE (1985) Oxygen uptake kinetics in trained athletes of differingO2max. Eur J Appl Physiol 54:306–308

    CAS  Google Scholar 

  • Renoux JC, Petit B, Billat VL, Koralsztein JP (1999) Oxygen deficit is related to the exercise time to exhaustion at maximal aerobic speed in middle distance runners. Arch Physiol Biochem 107:280–285

    Article  CAS  PubMed  Google Scholar 

  • Scheuermann BW, Barstow TJ (2003) O2 uptake kinetics during exercise at peak O2 uptake. J Appl Physiol 95:2014–2022

    PubMed  Google Scholar 

  • Smith TP, Coombes JS, Geraghty DP (2003) Optimising high-intensity treadmill training using the running speed at maximal O2 uptake and the time for which this can be maintained. Eur J Appl Physiol 89:337–343

    PubMed  Google Scholar 

  • Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardiorespiratory performance. J Appl Physiol 8:73–80

    CAS  PubMed  Google Scholar 

  • Whipp BJ, Ozyener F (1998) The kinetics of exertional oxygen uptake: assumptions and inferences Med Sport 51:139–149

    Google Scholar 

  • Yoshida T, Udo M, Ohmori T, Matsumoto Y, Uramoto T, Yamamoto K (1992) Day-to-day changes in oxygen uptake kinetics at the onset of exercise strenuous endurance training. Eur J Appl Physiol 64:64–78

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação de Amparo à Pesquisa do Estado de São Paulo and Fundação para o Desenvolvimento da UNESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedito Sérgio Denadai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caputo, F., Denadai, B.S. Effects of aerobic endurance training status and specificity on oxygen uptake kinetics during maximal exercise. Eur J Appl Physiol 93, 87–95 (2004). https://doi.org/10.1007/s00421-004-1169-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-004-1169-3

Keywords

Navigation