Skip to main content

Oxygen transport in blood at high altitude: role of the hemoglobin–oxygen affinity and impact of the phenomena related to hemoglobin allosterism and red cell function

Abstract

Altitude hypoxia is a major challenge to the blood O2 transport system, and adjustments of the blood–O2 affinity might contribute significantly to hypoxia adaptation. In principle, lowering the blood–O2 affinity is advantageous because it lowers the circulatory load required to assure adequate tissue oxygenation up to a threshold corresponding to about 5,000 m altitude, whereas at higher altitudes an increased blood–O2 affinity appears more advantageous. However, the rather contradictory experimental evidence raises the question whether other factors superimpose on the apparent changes of the blood–O2 affinity. The most important of these are as follows: (1) absolute temperature and temperature gradients within the body; (2) the intracapillary Bohr effect; (3) the red cell population heterogeneity in terms of O2 affinity; (4) control of altitude alkalosis; (5) the possible role of hemoglobin as a carrier of the vasodilator nitric oxide; (6) the effect of varied red cell transit times through the capillaries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Agostoni PG, Wasserman K, Perego GB, Marenzi GC, Guazzi M, Assanelli E, Lauri G, Guazzi MD (1996) Oxygen transport to muscle during exercise in chonic congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol 79:1120–1124

    Article  Google Scholar 

  • Agvald P, Adding LC, Artlich A, Persson MG, Gustafsson LE (2002) Mechanism of nitric oxide generation from nitroglycerin and endogenous sources during hypoxia in vivo. Br J Pharmacol 135:373–382

    CAS  PubMed  Google Scholar 

  • Allan G, Chapple DJ, Hughes B (1986) Effects of an increase in hemoglobin O2 affinity produced by BW12C on myocardial function in the erythrocyte-perfused rabbit heart in vitro and myocardial infarct size in the dog. Br J Pharmacol 89:183–190

    CAS  PubMed  Google Scholar 

  • Apstein CS, Dennis RC, Briggs LL, Vogel WM, Frazer J, Valeri CR (1985) Effect of erythrocyte storage and oxyhemoglobin affinity changes on cardiac function. Am J Physiol 248:H508–H515

    CAS  PubMed  Google Scholar 

  • Bakker JC, Gortmaker GC, Offerjins FGJ (1976) The influence of the position of the oxygen dissociation on oxygen-dependent functions of the isolated perfused rat liver. Pflugers Arch 366:45–52

    CAS  PubMed  Google Scholar 

  • Bakker JC, Gortmaker GC, Devries Van Rossen A, Offerijns FGJ (1977) The influence of the position of the oxygen dissociation on oxygen-dependent functions of the isolated perfused rat liver. Pflugers Arch 368:63–70

    CAS  PubMed  Google Scholar 

  • Barcroft J, King WOR (1909) The effect of temperature on the dissociation curve of blood . J Physiol (Lond) 39:374–384

    Google Scholar 

  • Baron JF, Vicaut E, Stucker O, Villereal MC, Ropars C, Teisserie B, Duvelleroy M (1987) Isolated heart as a model to study the effects of the in oxygen hemoglobin affinity. Adv Biosci 67:73–78

    Google Scholar 

  • Berlin G, Challoner KE, Woodson RD (2002) Low-O2 affinity erythrocytes improve performance of ischemic myocardium. J Appl Physiol 92:1267–1276

    PubMed  Google Scholar 

  • Bradwell AR, Dykes PW, Coote JH (1987) Effect of acetazolamide on exercise at altitude. Sports Med 4:157–163

    CAS  PubMed  Google Scholar 

  • Clark MR (1988) Senescence of red blood cells: progress and problems. Physiol Rev 68:503–554

    CAS  PubMed  Google Scholar 

  • Curtis SE, Walker TA, Bradley WE, Cain SM (1997) Raising P50 increases tissue PO2 in canine skeletal muscle but does not affect critical O2 extraction ratio. J Appl Physiol 83:1681–1689

    CAS  PubMed  Google Scholar 

  • Deem S, Gladwin MT, Berg JT, Kerr ME, Swenson ER (2001) Effects of S-nitrosation of hemoglobin on hypoxic pulmonary vasoconstriction and nitric oxide flux. Am J Resp Crit Care Med 163:1164–1170

    CAS  PubMed  Google Scholar 

  • Fike CD, Kaplowitw MR, Thomas CJ, Nelin LD (1998) Chronic hypoxia decreases nitric oxide production and endothelial nitric oxide synthase in newborn pig lungs. Am J Physiol 274:L517–L526

    CAS  PubMed  Google Scholar 

  • Grassi B, Marzorati M, Kayser B, Bordini M, Colombini A, Conti M, Marconi C, Cerretelli P (1996) Peak blood lactate and blood lactate vs workload during acclimatization to 5,050 m and in deacclimatization. J Appl Physiol 80:685–692

    Google Scholar 

  • Gutierrez G, Andry JM (1989) Increased hemoglobin oxygen affinity does not improve oxygen consumption in hypoxemia. J Appl Physiol 66:837–843

    CAS  PubMed  Google Scholar 

  • Guzel NA, Sayan H, Erbas D (2000) Effects of moderate altitude on exhaled nitric oxide, erythrocytes lipid peroxidation and superoxide dismutase levels. Jpn J Physiol 50:187–190

    CAS  PubMed  Google Scholar 

  • Hobbs AJ, Gladwin MT, Patel RP, Williams DLH, Butler AR (2002) Hemoglobin: NO transporter, NO inactivator, or NOne of the above? Trends Pharmacol Sci 23:406–411

    Article  CAS  PubMed  Google Scholar 

  • Hrinczenko BW, Alayash AI, Wink DA, Gladwin MT, Rodgers GP, Schechter AN (2000) Effect of nitric oxide and nitric oxide donors on red blood cell oxygen transport. Br J Haematol 110:412–419

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Bonaventura C, Bonaventura J, Stamler JS (1996) S-nitrosohemoglobin: a dynamic activity of blood involved in vascular control. Nature 380:221–226

    CAS  PubMed  Google Scholar 

  • Khandelwal SR, Randad RS, Lin PS, Meng H, Pittman RN, Kontos HA, Choi SC, Abraham DJ, Schmidt-Ullrich R (1993) Enhanced oxygenation in vivo by allosteric inhibitors of hemoglobin saturation. Am J Physiol 265:H1450–H1453

    CAS  PubMed  Google Scholar 

  • Koehler RC, Traystman RJ, Jones JR (1986) Influence of reduced oxyhemoglobin affinity on response to hypoxic hypoxia. Am J Physiol 251:H756–H763

    CAS  PubMed  Google Scholar 

  • Kunert MP, Liard JF, Abraham DJ, Lombard JH (1996) Low-affinity hemoglobin increases tissue PO2 and decreases arteriolar diameter and flow in the rat cremaster muscle. Microvasc Res 52:58–68

    Article  CAS  PubMed  Google Scholar 

  • Lahiri S, Edelman NH, Cherniack NS, Fishman AP (1969) Blunted hypoxic drive to ventilation in subjects with life-long hypoxemia. Fed Proc 28:1289–1295

    CAS  PubMed  Google Scholar 

  • Lenfant C, Torrance JD, Reynafarje C (1971) Shift of the O2–Hb dissociation curve at altitude: mechanism and effect. J Appl Physiol 30:625–631

    CAS  PubMed  Google Scholar 

  • Liard JF, Kunert MP (1993) Hemodynamic changes induced by low blood oxygen affinity in dogs. Am J Physiol 264:R396–R401

    CAS  PubMed  Google Scholar 

  • Linderkamp O, Meiselman HJ (1982) Geometric-osmotic and membrane mechanical properties of density-separated human red cells. Blood 59:1121–1127

    CAS  PubMed  Google Scholar 

  • Lister G (1984) Oxygen transport in the intact hypoxic newborn lamb: acute effects of increasing P50. Pediatr Res 18:172–177

    CAS  PubMed  Google Scholar 

  • Mairbaurl H, Oelz O, Bartsch P (1993) Intercations between Hb, Mg, DPG, ATP and Cl determine the change in Hb–O2 affinity at high altitude. J Appl Physiol 74:40–48

    Article  CAS  PubMed  Google Scholar 

  • Malmberg PO, Hlastala MP, Woodson RD (1979) Effect of increased blood-oxygen affinity on oxygen transport in hemorrhagic shock. J Appl Physiol 47:889–895

    CAS  PubMed  Google Scholar 

  • Martin JL, Duvelleroy M, Teisserie B, Duruble M (1979) Effect of an increase in HbO2 affinity on the calculated capillary recruitment of an isolated rat heart. Pflugers Arch 382:57–61

    CAS  PubMed  Google Scholar 

  • McMahon T, Moon RE, Luschinger BP, Carraway MS, Stone AE, Stolp BW, Gow AJ, Pawloski JR, Watke P, Singel DJ, Piantadosi CA, Stamler JS (2002) Nitric oxide in the human respiratory cycle. Nat Med 8:711–717

    CAS  PubMed  Google Scholar 

  • McMahon TJ, Stone AE, Bonaventura J, Singel DJ, Stamler JS (2000) Functional coupling of oxygen binding and vasoactivity in S-nitrosohemoglobin. J Biol Chem 275:16738–16745

    Article  CAS  PubMed  Google Scholar 

  • Monge CC, Leon-Velarde F (1991) Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev 71:1135–1172

    CAS  PubMed  Google Scholar 

  • Nakashima K, Susuma O, Miwa S (1973) Red cell density in various blood disorders. J Lab Clin Med 82:297–302

    CAS  PubMed  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    CAS  PubMed  Google Scholar 

  • Nelin LD, Thomas CJ, Dawson CA (1996) Effect of hypoxia on nitric oxide production in neonatal pig lung. Am J Physiol 271:H8–H14

    CAS  PubMed  Google Scholar 

  • Pawloski JR, Hess DT, Stamler JS (2001) Export by red cells of nitric oxide bioactivity. Nature 409:622–626

    Google Scholar 

  • Perego GB, Marenzi GC, Guazzi M, Sganzerla P, Assanelli E, Palermo P, Conconi B, Lauri G, Agostoni PG (1996) Contribution of PO2, P 50, and Hb to changes in arteriovenous oxygen content during exercise in heart failure. J Appl Physiol 80:623–631

    Article  CAS  PubMed  Google Scholar 

  • Reeves RB, Morin RA (1986) Pressure increases oxygen affinity of whole blood and erythrocyte suspensions. J Appl Physiol 61:486–494

    CAS  PubMed  Google Scholar 

  • Rosenberg AA, Harris AP, Koehler RC, Hudak ML, Traystman RJ, Jones JR (1986) Role of O2–hemoglobin affinity in the regulation of cerebral blood flow in fetal sheep. Am J Physiol 251:H56–H62

    CAS  PubMed  Google Scholar 

  • Ross BK, Hlastala MP (1981) Increased hemoglobin–oxygen affinity does not decrease muscle oxygen consumption. J Appl Physiol 51:864–870

    CAS  PubMed  Google Scholar 

  • Roughton FJW, Severinghaus JW (1973) Accurate determination of O2 dissociation curve of human above 98.7% saturation with data on O2 solubility in unmodified human blood from 0° to 37°C. J Appl Physiol 35:861–869

    CAS  PubMed  Google Scholar 

  • Rovida E, Niggeler M, Carlone S, Samaja M (1984) Carboxyhemoglobin and oxygen affinity of human blood. Clin Chem 30:1250–1251

    CAS  PubMed  Google Scholar 

  • Samaja M (1988) Prediction of the oxygenation of human organs at varying blood oxygen carrying properties. Respir Physiol 72:211–218

    Article  CAS  PubMed  Google Scholar 

  • Samaja M, Rovida E (1987) The oxygen affinity properties of old and young human erythrocytes (abstract). Ann Clin Biochem 24:126

    Google Scholar 

  • Samaja M, Melotti D, Rovida E, Rossi Bernardi L (1983) Effect of temperature on the p50 value for human blood. Clin Chem 29:110–114

    CAS  PubMed  Google Scholar 

  • Samaja M, di Prampero PE, Cerretelli P (1986) The role of 2,3-DPG in the oxygen transport at altitude. Respir Physiol 64:191–202

    Article  CAS  PubMed  Google Scholar 

  • Samaja M, Motterlini R, Tarantola M, Beretta M, Rossi F, Sabbioneda L, Porcellati M, Zanella A (1991) Viability of the IHP-loaded red cell in the hypoperfused isolated rat heart. Adv Biosci 81:181–188

    CAS  Google Scholar 

  • Samaja M, Brenna L, Allibardi S, Cerretelli P (1993) Human red cell aging at 5050 m altitude: a role during adaptation to hypoxia. J Appl Physiol 75:1696–1701

    CAS  PubMed  Google Scholar 

  • Samaja M, Mariani C, Prestini A, Cerretelli P (1997) Acid–base balance and O2 transport at high altitude. Acta Physiol Scand 159:249–256

    CAS  PubMed  Google Scholar 

  • Seaman C, Wyss S, Piomelli S (1980) The decline in energetic metabolism with aging of the erythrocyte and its relationship to cell death. Am J Hematol 8:31–42

    CAS  PubMed  Google Scholar 

  • Severinghaus JW (1966) Blood gas calculator. J Appl Physiol 21:1108–1116

    CAS  PubMed  Google Scholar 

  • Severinghaus JW (1979) Simple, accurate equations from human blood O2 dissociation computations. J Appl Physiol 46:599–602

    CAS  PubMed  Google Scholar 

  • Sheel AW, Edwards MR, McKenzie DC (2000) Relationship between decreased oxyhemoglobin saturation and exhaled nitric oxide during exercise. Acta Physiol Scand 169:149–156

    CAS  PubMed  Google Scholar 

  • Siggaard-Andersen O (1971) An acid–base chart for arterial blood with normal and pathophysiological reference areas. Scand J Clin Lab Invest 27:239–245

    CAS  PubMed  Google Scholar 

  • Siggaard-Andersen O, Wimberley PD, Gothgen I, Siggaard-Andersen M (1984) A mathematical model of the hemoglobin-oxygen dissociation curve of human blood and of the oxygen partial pressure as a function of temperature. Clin Chem 30:1646–1651

    CAS  PubMed  Google Scholar 

  • Stringer W, Wasserman K, Casaburi R, Porszasz J, Maehara K, French W (1994) Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise. J Appl Physiol 76:1462–1467

    CAS  PubMed  Google Scholar 

  • Stucker O, Vicaut E, Villereal MC, Ropars C, Teisserie BP, Duvelleroy MA (1985) Coronary response to large decrease of hemoglobin O2 affinity in isolated rat heart. Am J Physiol 249:H1224–H1227

    CAS  PubMed  Google Scholar 

  • Teisserie B, Ropars C, Vallez MO, Herigault RA, Nicolau C (1985) Physiological effects of high-P50 erythrocyte transfusion on piglets. J Appl Physiol 58:1810–1817

    PubMed  Google Scholar 

  • Teisserie B, Ropars C, Villereal M C, Nicolau C (1987) In vivo consequences of rightward shift of the hemoglobin dissociation curve. Adv Biosci 67:89–94

    Google Scholar 

  • Thomas LJ (1972) Algorithms for selected blood acid-base and blood gas calculations. J Appl Physiol 33:154–158

    PubMed  Google Scholar 

  • Turek Z, Kreuzer F, Ringnalda BEM (1978a) Blood gases at several levels of oxygenation in rats with a left-shifted blood oxygen dissociation curve. Pflugers Arch 376:7–13

    CAS  PubMed  Google Scholar 

  • Turek Z, Kreuzer F, Turek Maischeider M, Ringnalda BEM (1978b) Blood O2 content, cardiac output, and flow to organs at several levels of oxygenation in rats with a left-shifted blood oxygen dissociation curve. Pflugers Arch 376:201–207

    CAS  PubMed  Google Scholar 

  • Vandegriff KD, Olson JS (1984a) The kinetics of O2 release by human red blood cells in the presence of external sodium dithionite. J Biol Chem 259:12609–12618

    CAS  PubMed  Google Scholar 

  • Vandegriff KD, Olson JS (1984b) Morphological and physiological factors affecting oxygen and release by red blood cells. J Biol Chem 259:12619–12627

    CAS  PubMed  Google Scholar 

  • Vandegriff KD, Olson JS (1984c) A quantitative description in three dimensions of oxygen uptake by human red blood cells. Biochem J 45:825–835

    CAS  Google Scholar 

  • Vandegriff KD, Winslow RM (1995) A theoretical analysis of oxygen transport: A new strategy for the design of hemoglobin-based red cell substitutes. In: Winslow RM, Vandegriff KD, Intaglietta M (eds) Blood substitutes: physiological basis of efficacy. Birkhauser, Boston, pp 143–154

  • Wasserman K, Hansen JE, Sue DY (1991) Facilitation of oxygen consumption by lactic acidosis during exercise. News Physiol Sci 6:29–34

    Google Scholar 

  • Weiss RG, Mejia MA, Kass DA, DiPaula AF, Becker LC, Gerstenblith G, Chacko VP (1999) Preservation of canine myocardial high-energy phosphates during low-flow ischemia with modification of hemoglobin-oxygen affinity. J Clin Invest 103:739–746

    CAS  PubMed  Google Scholar 

  • Winslow RM, Samaja M, Winslow NJ, Rossi Bernardi L, Shrager RI (1983) Simulation of continuous blood O2 equilibrium curve over the physiologic pH, DPG and pCO2 range. J Appl Physiol 54:524–529

    Google Scholar 

  • Winslow RM, Samaja M, West JB (1984) Red cell function at extreme altitudes on Mount Everest. J Appl Physiol 56:109–116

    Google Scholar 

  • Woodson RD, Wranne B, Detter JC (1973) Effect of increased blood oxygen affinity on work performance of rats. J Clin Invest 52:2717–2724

    CAS  PubMed  Google Scholar 

  • Woodson RD, Auerbach S (1982) Effect of increased oxygen affinity and anemia on cardiac output and its distribution. J Appl Physiol 53:1299–1306

    CAS  PubMed  Google Scholar 

  • Woodson RD, Hoerl C, Borchardt M (1987) P50 shifts and tissue oxygen pressure. Adv Biosci 67:79–80

    Google Scholar 

  • Wranne B, Nordgren L, Woodson RD (1974) Increased blood oxygen affinity and physical work capacity in man. Scand J Clin Lab Invest 33:347–352

    CAS  PubMed  Google Scholar 

  • Yhap EO, Wright CB, Popovic NA, Alix EC (1975) Decreased oxygen uptake with stored blood in the isolated hindlimb. J Appl Physiol 38:882–885

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the helpful advice by Professor Robert M. Winslow, Sangart, Inc., for the discussion of the RBC transit time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Samaja.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Samaja, M., Crespi, T., Guazzi, M. et al. Oxygen transport in blood at high altitude: role of the hemoglobin–oxygen affinity and impact of the phenomena related to hemoglobin allosterism and red cell function. Eur J Appl Physiol 90, 351–359 (2003). https://doi.org/10.1007/s00421-003-0954-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-003-0954-8

Keywords

  • Altitude hypoxia
  • Oxygen equilibrium curve
  • Hemoglobin allosterism
  • Red cell function