Skip to main content
Log in

Self-affine fractal variability of human heartbeat interval dynamics in health and disease

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The complexity of the cardiac rhythm is demonstrated to exhibit self-affine multifractal variability. The dynamics of heartbeat interval time series was analyzed by application of the multifractal formalism based on the Cramèr theory of large deviations. The continuous multifractal large deviation spectrum uncovers the nonlinear fractal properties in the dynamics of heart rate and presents a useful diagnostic framework for discrimination and classification of patients with cardiac disease, e.g., congestive heart failure. The characteristic multifractal pattern in heart transplant recipients or chronic heart disease highlights the importance of neuroautonomic control mechanisms regulating the fractal dynamics of the cardiac rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a–d.
Fig. 4a–h.
Fig. 5a–c.
Fig. 6a–f.
Fig. 7a, b.
Fig. 8.

Similar content being viewed by others

References

  • Abarbanel HDI (1996) Analysis of observed chaotic data. Springer-Verlag, Berlin Heidelberg New York

  • Amaral LAN, Goldberger AL, Ivanov PC, Stanley HE (1998) Scale-independent measures and pathologic cardiac dynamics. Physiol Rev Lett 81:2388–2391

    Article  CAS  Google Scholar 

  • Bassingthwaighte JB, Liebovitch LS, West BJ (1994) Fractal physiology. Oxford University Press, New York

  • Brown G, Michon G, Peyrière J (1992) On the multifractal analysis of measures. J Stat Phys 66:775–790

    Google Scholar 

  • Bunde A, Krapp J, Schellnhuber HJ (2002) The science of disasters. Springer-Verlag, Berlin Heidelberg New York

  • Canus C, Véhel JL, Tricot C (1998) Continuous large deviation multifractal spectrum: definition and estimation. In: Novak MM (ed) Fractals and beyond. World Scientific, Singapore, pp 117–128

  • Doukhan P, Oppenheim G, Taqqu MS (2003) Theory and applications of long-range dependence. Birkhäuser, Basel

  • Ellis RS (1985) Entropy, large deviations, and statistical mechanics. Springer-Verlag, Berlin Heidelberg New York

  • Falconer KJ (1990) Fractal geometry: mathematical foundations and applications. Wiley, New York

    Google Scholar 

  • Frisch U, Parisi G (1985) Fully developed turbulence and intermittency. In: Ghil M et al. (eds) Turbulence and predictability in geophysical dynamics and climate dynamics. North-Holland, Amsterdam, pp 84–88

  • Halsey TC, Jensen M, Kadanoff L, Procaccia I, Shraiman B (1986) Fractal measures and their singularities: the characterization of strange sets. Physiol Rev A 33:1141–1151

    Article  Google Scholar 

  • Holley R, Waymire E (1992) Multifractal dimensions and scaling exponents for strongly bounded random cascades. Ann Appl Prob 2:819–845

    Google Scholar 

  • Ivanov PC, Rosenblum MG, Peng C-K, Mietus J, Havlin S, Stanley HE, Goldberger AL (1996) Scaling behavior of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 383:323–327

    Article  CAS  PubMed  Google Scholar 

  • Ivanov PC, Rosenblum MG, Peng C-K, Mietus J, Havlin S, Stanley HE, Goldberger AL (1998a) Scaling and universality of heart rate variability distributions. Physica A 249:587–593

    Article  PubMed  Google Scholar 

  • Ivanov PC, Amaral ALN, Goldberger AL, Stanley HE (1998b) Stochastic feedback and the regulation of biological rhythms. Europhysiol Lett 43:363–368

    CAS  Google Scholar 

  • Ivanov PC, Armaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik Z, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399:461–485

    Article  Google Scholar 

  • Jaffard S (1997) Multifractal formalism for functions: I. Results valid for all functions, II. Self-similar functions. SIAM J Math Anal 28:944–998

    Article  Google Scholar 

  • Kanters JK, Holstein-Rathlou NH, Agner E (1994) Lack of evidence for low-dimensional chaos in heart rate variability. J Cardiovasc Electrophysiol 5:591–601

    Google Scholar 

  • Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, New York

  • Kaplan DT, Glass L (1995) Understanding nonlinear dynamics. Springer-Verlag, Berlin Heidelberg New York

  • Lefebvre JH, Goodings DA, Kamath MV, Fallen EL (1993) Predictability of normal heart rhythms and deterministic chaos. Chaos 3:267–276

    Article  PubMed  Google Scholar 

  • Mandelbrot BB (1999) Multifractals and 1/f noise. Springer-Verlag, Berlin Heidelberg New York

  • Meneveau C, Streenivasan KR (1987) Simple multifractal cascade model for fully developed turbulence. Physiol Rev Lett 59:1424–1427

    Article  Google Scholar 

  • Meyer M, Rahmel A, Marconi C, Grassi B, Skinner JE, Cerretelli P (1998a) Is the heart preadapted to hypoxia? Evidence from fractal dynamics of heartbeat interval fluctuations at high altitude (5050m). Int Physiol Behav Sci 33:9–40

    CAS  Google Scholar 

  • Meyer M, Rahmel A, Marconi C, Grassi B, Cerretelli P, Skinner JE (1998b) Stability of heartbeat interval distributions in chronic high altitude hypoxia. Int Physiol Behav Sci 33:344–362

    CAS  Google Scholar 

  • Peng C-K, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary time series. Chaos 5:82–87

    Article  CAS  PubMed  Google Scholar 

  • Peng C-K, Havlin S, Haussdorff JM, Stanley HE, Goldberger AL (1996) Fractal mechanisms and heart rate dynamics: long-range correlations and their breakdown with disease. J Electrocardiol 28:59–65

    Google Scholar 

  • Poon C-S, Merrill CK (1997) Decrease of cardiac chaos in congestive heart failure. Nature 389:492–495

    Article  CAS  Google Scholar 

  • Riedi R (1995) An improved multifractal formalism and self-similar measures. J Math Anal Appl 189:462–490

    Article  Google Scholar 

  • Riedi RH, Crouse MS, Ribeiro VJ, Baraniuk RG (1999) A multifractal wavelet model with application to network traffic. IEEE Trans Signal Proc 45:992–1019

    Article  Google Scholar 

  • Stiedl O, Meyer M (2002) Fractal dynamics of heart beat interval fluctuations in corticotropin-releasing factor receptor subtype 2 deficient mice. Int Physiol Behav Sci 37:311–345

    Google Scholar 

  • Stiedl O, Meyer M (2003) Fractal dynamics in circadian cardiac time series of corticotropin-releasing factor subtype-2 deficient mice. J Math Biol 47:169–197

    CAS  PubMed  Google Scholar 

  • Sugihara G, Allan O, Sobel D, Allan KD (1996) Nonlinear control of heart rate variability in human infants. Proc Natl Acad Sci USA 93:2608–2613

    Article  CAS  PubMed  Google Scholar 

  • Thurner S, Feurstein MC, Teich MC (1988) Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those with cardiac pathology. Physiol Rev Lett 80:1544–1551

    Article  Google Scholar 

  • Véhel JL Vojak R (1998) Multifractal analysis of choquet quantities: preliminary results. Adv Appl Math 20:1–43

    Article  Google Scholar 

  • West BJ (1999) Physiology, promiscuity and prophecy at the millennium: a tale of trails. Word Scientific, Singapore

  • Yamamoto Y, Hughson RL, Sutton JR, Houston CS, Cymerman A, Fallen EL, Kamath MV (1993) Operation Everest II: an indication of deterministic chaos in human heart rate variability at simulated altitude. Biol Cybern 69:205–212

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meyer.

Additional information

Dedicated to Paolo Cerretelli on the occasion of his 70th birthday anniversary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, M., Stiedl, O. Self-affine fractal variability of human heartbeat interval dynamics in health and disease. Eur J Appl Physiol 90, 305–316 (2003). https://doi.org/10.1007/s00421-003-0915-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-003-0915-2

Keywords

Navigation