Skip to main content

Advertisement

Log in

Cardiovascular deconditioning in microgravity: some possible countermeasures

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Microgravity is an extreme environment inducing relevant adaptive changes in the human body, especially after prolonged periods of exposure. Since the early sixties, numerous studies on the effects of microgravity, during manned Space flights, have produced an increasing amount of information concerning its physiological effects, globally defined "deconditioning". Microgravity deconditioning of the cardiovascular system (CVD) is briefly reviewed. It consists of: (1) a decrease of circulating blood and interstitial fluid volumes, (2) a decrease of arterial blood diastolic pressure, (3) a decrease of ventricular stroke volume, (4) a decrease of the estimated left ventricular mass and (5) resetting of the carotid baroreceptors. The negative effects of microgravity deconditioning manifest themselves mostly upon the reentry to Earth. They consist mainly of: (1) dizziness, (2) increased heart rate and heart palpitations, (3) an inability to assume the standing position (orthostatic intolerance), (4) pre-syncopal feelings due to postural stress and (5) reduced exercise capacity. To avoid these drawbacks several countermeasures have been proposed; they will be briefly mentioned with emphasis on the "Twin Bikes System" (TBS). This consists of two coupled bicycles operated by astronauts and counter-rotating along the inner wall of a cylindrical Space module, thus generating a centrifugal force vector, mimicking gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4a, b.

Similar content being viewed by others

References

  • Antonutto G, Capelli C, di Prampero PE (1991) Pedalling in Space as a countermeasure to microgravity deconditioning. Microgravity Q 1:93–101

    CAS  PubMed  Google Scholar 

  • Antonutto G, Linnasson D, di Prampero PE (1993) On Earth evaluation of neurovestibular tolerance to centrifuge simulated artificial gravity in humans. Physiologist 36 [Suppl. 1]:S85–S87

  • Antonutto G, Girardis M, Tuniz D, Petri E, Capelli C (1994) Assessment of cardiac output from noninvasive determination of arterial pressure profile in subjects at rest. Eur J Appl Physiol 69:183–188

    CAS  Google Scholar 

  • Antonutto G, Girardis M, Tuniz D, di Prampero PE (1995) Non-invasive assessment of cardiac output from arterial pressure profiles during exercise. Eur J Appl Physiol 72:18–24

    CAS  Google Scholar 

  • Antonutto G, Capelli C, Girardis M, Zamparo P, di Prampero PE (1999) Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol 86:85–92

    CAS  PubMed  Google Scholar 

  • Benson AJ (1988) Motion sickness. In: Ernsting J, King P (eds) Aviation medicine. Butterworth, London, pp 318–338

  • Bungo MW, Johnson PC Jr (1983) Cardiovascular examinations and observations of deconditioning during Space Shuttle Orbital Flight Test Program. Aviat Space Environ Med 54:1001–1004

    CAS  PubMed  Google Scholar 

  • Bungo MW, Goldwater DJ, Popp RL, Sandler H (1987) Echocardiographic evaluation of Space Shuttle crewmembers. J Appl Physiol 62:278–283

    CAS  PubMed  Google Scholar 

  • Burton RR (1997) Artificial gravity in Space flight. J Gravit Physiol 4:P17–P20

    CAS  PubMed  Google Scholar 

  • Burton RR, Meeker LJ (1994) Taking gravity to Space. J Gravit Physiol 1:P15–P18

    CAS  PubMed  Google Scholar 

  • Capelli C, Rosa G, Butti F, Ferretti G, Veicsteinas A, di Prampero PE (1993) Energy cost and efficiency of riding aerodynamic bicycles. Eur J Appl Physiol 67:144–149

    CAS  Google Scholar 

  • Cardùs D (1994) Artificial gravity in space and in medical research. J Gravit Physiol 1:P19–P22

    PubMed  Google Scholar 

  • Cautero M, Antonutto G, Fusi S, Tam E, di Prampero PE, Linnarsson D, Ferretti G, Capelli C (2003) Oxygen uptake at the onset of step-exercise before and after short duration bed rest in humans. J Gravit Physiol (in press)

  • Charles JB, Lathers CM (1991) Cardiovascular adaptation to spaceflight. J Clin Pharmacol 31:1001–1023

    PubMed  Google Scholar 

  • Charles JB, Bungo MW, Fortner GW (1994) Cardiopulmonary function. In: Nicogossian AE, Leach Huntoon C, Pool SM (eds) Space physiology and medicine. Lea and Febiger, Philadelphia, pp 286–304

  • Churchill SE, Bungo MW (1997) Response of the cardiovascular system to spaceflight. In: Churchill SE (ed) Fundamentals of space life sciences, vol 1. Krieger, Malabar Fla., pp 41–63

  • Fahri LE, Nesarajah MS, Olszowka AJ, Metildi LA, Ellis AK (1976) Cardiac output determination by a simple one step rebreathing technique. Respir Physiol 28:141–159

    Article  PubMed  Google Scholar 

  • Ferretti G, Girardis M, Moia C, Antonutto G (1998) Effects of prolonged bed rest on cardiovascular oxygen transport during submaximal exercise in humans. Eur J Appl Physiol 78:398–402

    Article  CAS  Google Scholar 

  • Ferretti G, Berg HE, Minetti AE, Moia C, Rampichini S, Narici MV (2000) Maximal instantaneous muscular power after prolonged bed rest in humans. J Appl Physiol 90:431–435

    Google Scholar 

  • Fortney SM, Schneider VS, Greenleaf JE (1996) The physiology of bed rest. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology, section 4, vol 2. Environmental physiology. American Physiological Society, Bethesda, Md. and Oxford University Press, Oxford, pp 889–939

  • Fritsch JM, Charles JB, Bennett BS, Jones MM, Eckberg DL (1992) Short-duration space flight impairs human carotid baroreceptor-cardiac reflex responses. J Appl Physiol 73:664–671

    CAS  PubMed  Google Scholar 

  • Gazenko OG, Schilzenko EB, Yegorov AD (1985) Cardiovascular changes in prolonged spaceflights. IAF Preprint, 36th IAF Conference, Stockholm (S). Pergamon, New York

  • Greenleaf JE, Gundo DP, Watenpaugh DE, Mulenburg GM, McKenzie MA, Looft-Wilson R, Hargens AR (1997) Cycle-powered short radius (1.9 m) centrifuge: effect of exercise versus passive acceleration on heart rate in humans. NASA Technical Memorandum 110433

  • Hall TW (1994) The architecture of artificial-gravity environments for long-duration space habitation. Doctoral dissertation, University of Michigan, UMI, Ann Arbor

  • Hastreiter D, Young LR (1997) Effects of gravity gradient on human cardiovascular responses. J Gravit Physiol 4:P23–P26

    CAS  PubMed  Google Scholar 

  • Henry WL, Epstein SE, Griffith LM, Goldstein RE, Redwood DR (1977) Effect of prolonged space flight on cardiac function and dimension. In: Johnston RS, Dietlein LF (eds) Biomedical results from Skylab (NASA SP-377). US Government Printing Office, Washington DC, pp 366–371

  • Hinghofer-Szalkay HC (1996) Physiology of cardiovascular, respiratory, interstitial, endocrine, immune and muscular systems. In: Moore D, Bie P, Oser H (eds) Biological and medical research in Space. Springer, Berlin Heidelberg New York, pp 107–153

  • Hoffler GW, Bergmen SA, Nicogossian AE (1977) In-flight lower limb measurement. In: Nicogossian AE (ed) The Apollo–Soyuz Test Project medical report (NASA SP-411). US Government Printing Office, Washington DC, pp 63–68

  • Johnson RL, Driscoll TB, Le Balnc AD (1977) Blood volume changes. In: Johnston RS, Dietlein LF (eds) Biomedical results from Skylab (NASA SP-377). US Government Printing Office, Washington DC, pp 284–312

  • Keller TS, Strauss AM, Szpalsky M (1992) Prevention of bone loss and muscle atrophy during manned space flight. Microgravity Q 2:89–102

    CAS  PubMed  Google Scholar 

  • Lackner JR, Graybiel A (1986) The effective intensity of Coriolis cross-coupling stimulation is gravitoinertial force dependent: implication for space motion sickness. Aviat Space Environ Med 57:229–235

    CAS  PubMed  Google Scholar 

  • Lane HW, Alfrey CP, Driscoll TB, Smith SM, Nyquist LE (1996) Control of red blood cell mass during space flight. J Gravit Physiol, 3:87–90

    Google Scholar 

  • Leach CS, Rambaut PC (1977) Biochemical responses of the Skylab crewmen: an overview. In: Johnston RS, Dietlein LF (eds) Biomedical results from Skylab (NASA SP-377). US Government Printing Office, Washington DC, pp 204–216

  • Leach CS, Inners LD, Charles JB (1991) Changes in total body water during spaceflight. J Clin Pharmacol 31:1001–1006

    PubMed  Google Scholar 

  • Leach Huntoon CL, Cintròn NM, Whitson PA (1994) Endocrine and biochemical functions. In: Nicogossian AE, Leach Huntoon C, Pool SM (eds) Space physiology and medicine. Lea and Febiger, Philadelphia, pp 334–350

  • Linnarsson D, Sundberg CJ, Tedner B, Haruna Y, Karemaker JM, Antonutto G, di Prampero PE (1996) Blood pressure and heart rate response to sudden changes of gravity during exercise. Am J Physiol 270:H2132–H2142

    CAS  PubMed  Google Scholar 

  • Minetti AE (2002) On the mechanical power of joint extensions as affected by the change in muscle force (or cross sectional area), ceteris paribus. Eur J Appl Physiol 86:363–369

    Google Scholar 

  • Nicogossian AE, Pool SM, JJ Uri (1994) Historical perspectives. In: Nicogossian AE, Leach Huntoon C, Pool SM (eds) Space physiology and medicine. Lea and Febiger, Philadelphia, pp 3–49

  • di Prampero PE (2000) Cycling on Earth, in space, on the Moon. Eur J Appl Phisiol 82:345–360

    Article  Google Scholar 

  • di Prampero PE, Antonutto G (1996) Effects of microgravity on muscle power: some possible countermeasures. In: ESA Symposium Proceeding on "Space Station Utilization", Darmstadt, ESA-SP-385, pp 103–106

  • di Prampero PE, Antonutto G (1997) Cycling in Space to simulate gravity. Int J Sports Med 18:S324–S326

    PubMed  Google Scholar 

  • di Prampero PE, Narici MV (2003) Muscles in microgravity: from fibres to human motion. J Biomech 36:403–412

    Article  PubMed  Google Scholar 

  • Rowell LB (1986) Human circulation. Regulation during physical stress. Oxford University Press, New York, pp 137–173

  • Spaak J, Sundblad P, Linnarsson D (2001) Impaired pressor response after spaceflight and bed rest: evidence for cardiovascular dysfunction. Eur J Appl Physiol 85:49–55

    Article  CAS  PubMed  Google Scholar 

  • Sundblad P, Spaak J, Linnarsson D (2000) Cardiovascular response to upright and supine exercise in humans after 6 weeks of head-down tilt (−6 degrees). Eur J Appl Physiol 83:303–309

    Article  CAS  PubMed  Google Scholar 

  • Vernikos J (1997) Artificial gravity intermittent centrifugation as a space flight countermeasure. J Gravit Physiol 4:P13–P16

    CAS  PubMed  Google Scholar 

  • Vil-Viliams IF, Kotovskaya AR, Shipov AA (1997) Biomedical aspects of artificial gravity. J Gravit Physiol 4:P27–P28

    CAS  PubMed  Google Scholar 

  • White WJ (1965) Space-based centrifuge. Proceedings of 1st Symposium on the Role of the Vestibular Organs in the Exploration of Space. U.S. Naval School of Aviation Medicine, Pensacola, Fla., and NASA, Washington DC, pp 209–213

  • Yegorov AD, Alferova IV, Polyakiva AP (1988a) State of cardiodynamics under conditions of long-term weightlessness. Kosm Biol Aviakosm Med 22:4–7

    Google Scholar 

  • Yegorov AD, Itsekhovskiy OG, Alferova IV, Turchaninova VF, Polenova AP, Golubchikova ZA, Domracheva MV, Lyamin VR, Turbasov VD (1988b) Study of cardiovascular system of Salyut-6 prime crew. USSR Space Life Digest 14:18–19

    Google Scholar 

  • Zamparo P, Minetti AE, di Prampero PE (2002) Interplay among the changes of muscle strength, cross-sectional area and maximal explosive power: theory and facts. Eur J Appl Physiol 88:193–202

    Article  CAS  PubMed  Google Scholar 

  • Zange J, Mueller K, Schuber M, Wackerhage H, Hoffmann U, Guenther RW, Adam G, Neuerburg JM, Sinitsyn VE, Bacharev AO, Belichenko OI (1997) Changes in calf muscle performance, energy metabolism and muscle volume caused by long term stay on space station MIR. Int J Sports Med 18 [Suppl. 4]:S308–S309

Download references

Acknowledgement

Part of the data reported in this study have been collected thanks to the financial support of the Italian Space Agency (A.S.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Antonutto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonutto, G., di Prampero, P.E. Cardiovascular deconditioning in microgravity: some possible countermeasures. Eur J Appl Physiol 90, 283–291 (2003). https://doi.org/10.1007/s00421-003-0884-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-003-0884-5

Keywords

Navigation