Skip to main content
Log in

Effects of moderate hyperoxia on oxygen consumption during submaximal and maximal exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract.

The present study examined the effect of hyperoxia on oxygen uptake (V˙O2) and on maximal oxygen uptake (V˙O2max) during incremental exercise (IE) and constant work rate exercise (CWRE). Ten subjects performed IE on a bicycle ergometer under normoxic and hyperoxic conditions (30% oxygen). They also performed four 12-min bouts of CWRE at 40, 55, 70 and 85% of normoxic V˙O2max (ex1, ex2, ex3 and ex4, respectively) in normoxia and in hyperoxia. V˙O2max was significantly improved by 15.0 (15.2)% under hyperoxia, while performance (maximum workload, W max) was improved by only +4.5 (3.0)%. During IE, the slope of the linear regression relating V˙O2 to work rate was significantly steeper in hyperoxia than in normoxia [10.80 (0.88) vs 10.06 (0.66) ml·min–1·W–1]. During CWRE, we found a higher V˙O2 at ex1, ex2, ex3 and ex4, and a higher V˙O2 slow component at ex4 under hyperoxia. We have shown that breathing hyperoxic gas increases V˙O2max, but to an extent that is difficult to explain by an increase in oxygen supply alone. Changes in metabolic response, fibre type recruitment and V˙O2 of non-exercising tissue could explain the additional V˙O2 for a given submaximal work rate under hyperoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prieur, .F., Benoit, .H., Busso, .T. et al. Effects of moderate hyperoxia on oxygen consumption during submaximal and maximal exercise. Eur J Appl Physiol 88, 235–242 (2002). https://doi.org/10.1007/s00421-002-0707-0

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-002-0707-0

Navigation