Skip to main content

Advertisement

Log in

Prenatal exposure to ambient air pollution and adverse pregnancy outcomes in Ahvaz, Iran: a generalized additive model

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

A Correction to this article was published on 02 August 2022

This article has been updated

Abstract

Objective

There is some evidence about the short-term effects of air pollutants on adverse pregnancy outcomes. The aim of this study was to determine the association between air pollutants and spontaneous abortion, stillbirth, gestational hypertension, preeclampsia, gestational diabetes and macrosomia in Ahvaz, which is one of the most polluted cities in the Middle East.

Methods

Data on adverse pregnancy outcomes and air pollutants including ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), particles with a diameter of less than 10 µm (PM10) and particles with a diameter less than 2.5 µm (PM2.5) were inquired from the Health Department of Ahvaz Jundishapur University of Medical Sciences and the Environmental Protection Agency of Khuzestan Province for the years 2008–2018. A time series analysis using the generalized additive model (GAM) with up to 6-day lags was used.

Results

The results showed that the SO2 pollutant on 0, 1, 3, 4, and 6-day lags and PM10 on lag 0 had direct and significant associations with spontaneous abortion. NO, NO2 and CO on 0–6-day lags, and O3 on 6-day lags showed direct and significant associations with preeclampsia. NO and NO2 pollutants showed significant and direct associations with gestational diabetes, during 0- and 6-day lags. NO on 0-, 3- and 4-day lags, CO in all 0–6-day lags and PM2.5 on 1-, 3-, 5-, and 6-day lags showed direct and significant associations with macrosomia. None of the pollutants showed significant associations with stillbirth or gestational hypertension.

Conclusions

The results of this study suggest that some air pollutants are associated with spontaneous abortion, preeclampsia, gestational diabetes and macrosomia. This study further emphasizes the need to control ambient air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Data sharing: participant level data are available from the corresponding author.

Change history

Abbreviations

O3 :

Ozone

NO:

Nitric oxide

NO2 :

Nitrogen dioxide

NOx :

Nitrogen oxides

SO2 :

Sulfur dioxide

CO:

Carbon monoxide

PM10 :

Particles with a diameter of less than 10 µm

PM2.5 :

Particles with a diameter less than 2.5 µm

PM:

Particulate matter

WHO:

World Health Organization

GAM:

Generalized additive model

EM:

Expectation maximization

RR:

Relative risk

AIC:

Akaike Information Criteria

DOW:

Day of the week

CI:

Confidence interval

SE:

Standard error

TNF:

Tumor necrosis factor

References

  • Abdolahnejad A, Jafari N, Mohammadi A, Miri M, Hajizadeh Y, Nikoonahad A (2017) Cardiovascular, respiratory, and total mortality ascribed to PM10 and PM2. 5 exposure in Isfahan, Iran. J Educ Health Promot 6:1–6

    Google Scholar 

  • Abramowicz JS, Ahn JT (2018) Fetal macrosomia. UptoDate, literature review current through

  • Achilleos S, Kioumourtzoglou M-A, Wu C-D, Schwartz JD, Koutrakis P, Papatheodorou SI (2017) Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environ Int 109:89–100

    CAS  Google Scholar 

  • Alimadad A, Salibian-Barrera M (2011) An outlier-robust fit for generalized additive models with applications to disease outbreak detection. J Am Stat Assoc 106(494):719–731

    CAS  Google Scholar 

  • Allen RW et al (2013) An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Qual Atmos Health 6(1):137–150

    CAS  Google Scholar 

  • Alsammani MA, Ahmed SR (2012) Fetal and maternal outcomes in pregnancies complicated with fetal macrosomia. N Am J Med Sci 4(6):283

    Google Scholar 

  • Ananth CV, Basso O (2010) Impact of pregnancy-induced hypertension on stillbirth and neonatal mortality in first and higher order births: a population-based study. Epidemiology (Cambridge, Mass) 21(1):118

    Google Scholar 

  • Arroyo V, Díaz J, Carmona R, Ortiz C, Linares C (2016) Impact of air pollution and temperature on adverse birth outcomes: Madrid, 2001–2009. Environ Pollut 218:1154–1161

    CAS  Google Scholar 

  • Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B (2013) Time series regression studies in environmental epidemiology. Int J Epidemiol 42(4):1187–1195

    Google Scholar 

  • Bonzini M, Carugno M, Grillo P, Mensi C, Bertazzi P, Pesatori AC (2010) Impact of ambient air pollution on birth outcomes: systematic review of the current evidences. La Medicina del lavoro 101(5):341–363

    CAS  Google Scholar 

  • Breitner S, Wolf K, Peters A, Schneider A (2014) Short-term effects of air temperature on cause-specific cardiovascular mortality in Bavaria, Germany. Heart 100(16):1272–1280

    Google Scholar 

  • Cai Y et al (2016) Associations of short-term and long-term exposure to ambient air pollutants with hypertension: a systematic review and meta-analysis. Hypertension 68(1):62–70

    CAS  Google Scholar 

  • Calderon-Garciduenas L et al (2008) Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants. Inhalation Toxicol 20(5):499–506

    CAS  Google Scholar 

  • Chen H et al (2013) Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ Health Perspec 121(7):804–810

    Google Scholar 

  • Choe S-A, Jun Y-B, Kim S-Y (2018) Exposure to air pollution during preconceptional and prenatal periods and risk of hypertensive disorders of pregnancy: a retrospective cohort study in Seoul, Korea. BMC Pregnancy Childb 18(1):340

    Google Scholar 

  • Dadvand P et al (2014) Particulate air pollution and preeclampsia: a source-based analysis. Occup Environ Med 71(8):570–577

    Google Scholar 

  • Dastoorpoor M, Idani E, Goudarzi G, Khanjani N (2018) Acute effects of air pollution on spontaneous abortion, premature delivery, and stillbirth in Ahvaz, Iran: a time-series study. Environ Sci Pollut Res 25(6):5447–5458

    CAS  Google Scholar 

  • Dastoorpoor M, Sekhavatpour Z, Masoumi K et al (2019) Air pollution and hospital admissions for cardiovascular diseases in Ahvaz, Iran. Sci Total Environ 652:1318–1330

    Google Scholar 

  • DeFranco E et al (2015) Air pollution and stillbirth risk: exposure to airborne particulate matter during pregnancy is associated with fetal death. PLoS ONE 10(3):e0120594

    Google Scholar 

  • Dehghan A, Khanjani N, Bahrampour A, Goudarzi G, Yunesian M (2018) The relation between air pollution and respiratory deaths in Tehran, Iran-using generalized additive models. BMC Pulm Med 18(1):49

    Google Scholar 

  • Dollberg S, Fainaru O, Mimouni FB, Shenhav M, Lessing JB, Kupferminc M (2000) Effect of passive smoking in pregnancy on neonatal nucleated red blood cells. Pediatrics 106(3):E34

    CAS  Google Scholar 

  • Dominici F, McDermott A, Zeger SL, Samet JM (2002) On the use of generalized additive models in time-series studies of air pollution and health. Am J Epidemiol 156(3):193–203

    Google Scholar 

  • Elshahidi MH (2019) Outdoor air pollution and gestational diabetes mellitus: a systematic review and meta-analysis. Iran J Public health 48(1):9

    Google Scholar 

  • Endeshaw G, Berhan Y (2015) Perinatal outcome in women with hypertensive disorders of pregnancy: a retrospective cohort study. Int Scholarly Res Notices 2015:1–8

    Google Scholar 

  • Enkhmaa D et al (2014) Seasonal ambient air pollution correlates strongly with spontaneous abortion in Mongolia. BMC Pregnancy Childb 14(1):146

    Google Scholar 

  • Evenson DP, Wixon R (2005) Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA®). Toxicol Appl Pharmacol 207(2):532–537

    Google Scholar 

  • Faiz AS, Rhoads GG, Demissie K, Kruse L, Lin Y, Rich DQ (2012) Ambient air pollution and the risk of stillbirth. Am J Epidemiol 176(4):308–316

    Google Scholar 

  • Faiz AS, Rhoads GG, Demissie K, Lin Y, Kruse L, Rich DQ (2013) Does ambient air pollution trigger stillbirth? Epidemiology 24(4):538–544

    Google Scholar 

  • Fleisch AF et al (2014) Air pollution exposure and abnormal glucose tolerance during pregnancy: the project Viva cohort. Environ Health Perspect 122(4):378–383

    Google Scholar 

  • Fleisch AF, Kloog I, Luttmann-Gibson H, Gold DR, Oken E, Schwartz JD (2016) Air pollution exposure and gestational diabetes mellitus among pregnant women in Massachusetts: a cohort study. Environmental Health 15(1):40

    Google Scholar 

  • Ghorbani M, Firouz Zare A (2010) Valuation of different characteristics of air pollution in Mashhad. J Econ Res 44(89):215–241

    Google Scholar 

  • Green R, Sarovar V, Malig B, Basu R (2015) Association of stillbirth with ambient air pollution in a California cohort study. Am J Epidemiol 181(11):874–882

    Google Scholar 

  • Hackley B, Feinstein A, Dixon J (2007) Air pollution: impact on maternal and perinatal health. J Midwifery Women's Health 52(5):435–443

    Google Scholar 

  • Hafez A, Fahim H, Badawy H (2001) Socioenvironmental predictors of abortion and stillbirths in an industrial community in Egypt. J Egypt Public Health Assoc 76(1–2):1–16

    CAS  Google Scholar 

  • Hampel R et al (2011) Short-term impact of ambient air pollution and air temperature on blood pressure among pregnant women. Epidemiology 22(5):671–679

    Google Scholar 

  • He X-J, Qin F-y, Hu C-L, Zhu M, Tian C-Q, Li L (2015) Is gestational diabetes mellitus an independent risk factor for macrosomia: a meta-analysis? Arch Gynecol Obstet 291(4):729–735

    Google Scholar 

  • Hernandez TL, Friedman JE, Van Pelt RE, Barbour LA (2011) Patterns of Glycemia in Normal Pregnancy: Should the current therapeutic targets be challenged? Diabetes Care 34(7):1660–1668

    CAS  Google Scholar 

  • Hosseini V, Shahbazi H (2016) Urban air pollution in Iran. Iran Stud 49(6):1029–1046

    Google Scholar 

  • Hou HY, Wang D, Zou XP, Yang ZH, Li T-C, Chen YQ (2014) Does ambient air pollutants increase the risk of fetal loss? A case–control study. Arch Gynecol Obstet 289(2):285–291

    CAS  Google Scholar 

  • Hu H, Ha S, Roth J, Kearney G, Talbott EO, Xu X (2014) Ambient air pollution and hypertensive disorders of pregnancy: a systematic review and meta-analysis. Atmos Environ 97:336–345

    CAS  Google Scholar 

  • Hu H et al (2015) Association of atmospheric particulate matter and ozone with gestational diabetes mellitus. Environ Health Perspect 123(9):853–859

    CAS  Google Scholar 

  • Hwang B-F, Lee YL, Jaakkola JJ (2011) Air pollution and stillbirth: a population-based case–control study in Taiwan. Environ Health Perspect 119(9):1345–1349

    CAS  Google Scholar 

  • Jin L et al (2015) Ambient air pollution and congenital heart defects in Lanzhou, China. Environ Res Lett 10(7):074005

    Google Scholar 

  • Kioumourtzoglou M-A, Raz R, Wilson A, Fluss R, Nirel R, Broday DM (2019) Traffic-related air pollution and pregnancy loss. Epidemiology (Cambridge, Mass) 30(1):4

    Google Scholar 

  • Koyanagi A et al (2013) Macrosomia in 23 developing countries: an analysis of a multicountry, facility-based, cross-sectional survey. The Lancet 381(9865):476–483

    Google Scholar 

  • Lee P-C et al (2012) Ambient air pollution exposure and blood pressure changes during pregnancy. Environ Res 117:46–53

    CAS  Google Scholar 

  • Lee P-C, Roberts JM, Catov JM, Talbott EO, Ritz B (2013) First trimester exposure to ambient air pollution, pregnancy complications and adverse birth outcomes in Allegheny County, PA. Mater Child Health J 17(3):545–555

    Google Scholar 

  • Leiser CL et al (2019) Acute effects of air pollutants on spontaneous pregnancy loss: a case-crossover study. Fertil Steril 111(2):341–347

    CAS  Google Scholar 

  • Lu M-C, Wang P, Cheng T-J, Yang C-P, Yan Y-H (2017) Association of temporal distribution of fine particulate matter with glucose homeostasis during pregnancy in women of Chiayi City, Taiwan. Taiwan Environ Res 152:81–87

    CAS  Google Scholar 

  • Lucchesi M, Shochat G (2001) Toxicity, carbon monoxide. Eur Med J 10(10):1–16

    Google Scholar 

  • Makri A, Stilianakis NI (2008) Vulnerability to air pollution health effects. Int J Hyg Environ Health 211(3–4):326–336

    Google Scholar 

  • Malmqvist E, Jakobsson K, Tinnerberg H, Rignell-Hydbom A, Rylander L (2013) Gestational diabetes and preeclampsia in association with air pollution at levels below current air quality guidelines. Environ Health Perspect 121(4):488–493

    Google Scholar 

  • Männistö T, Mendola P, Liu D, Leishear K, Sherman S, Laughon SK (2014) Acute air pollution exposure and blood pressure at delivery among women with and without hypertension. Am J Hypertens 28(1):58–72

    Google Scholar 

  • Moradi Y et al (2019) Complications of type 2 diabetes in Iranian population: an updated systematic review and meta-analysis. Diabetes Metab Syndr Clin Res Rev 13(3):2300–2312

    Google Scholar 

  • Olsson D, Mogren I, Forsberg B (2013) Air pollution exposure in early pregnancy and adverse pregnancy outcomes: a register-based cohort study. BMJ open 3(2):e001955

    Google Scholar 

  • Pan S-C, Huang C-C, Lin S-J, Chen B-Y, Chan C-C, Guo Y-LL (2017) Gestational diabetes mellitus was related to ambient air pollutant nitric oxide during early gestation. Environ Res 158:318–323

    CAS  Google Scholar 

  • Pedersen M et al (2014) Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis. Hypertension 64(3):494–500

    CAS  Google Scholar 

  • Pedersen M et al (2017a) Impact of road traffic pollution on pre-eclampsia and pregnancy-induced hypertensive disorders. Epidemiology (Cambridge, Mass) 28(1):99

    Google Scholar 

  • Pedersen M et al (2017b) Gestational diabetes mellitus and exposure to ambient air pollution and road traffic noise: a cohort study. Environ Int 108:253–260

    CAS  Google Scholar 

  • Pereira LA et al (1998) Association between air pollution and intrauterine mortality in São Paulo, Brazil. Environ Health Perspect 106(6):325–329

    CAS  Google Scholar 

  • Pereira G, Haggar F, Shand AW, Bower C, Cook A, Nassar N (2013) Association between pre-eclampsia and locally derived traffic-related air pollution: a retrospective cohort study. J Epidemiol Community Health 67(2):147–152

    Google Scholar 

  • Phung D et al (2016) Air pollution and risk of respiratory and cardiovascular hospitalizations in the most populous city in Vietnam. Sci Total Environ 557:322–330

    Google Scholar 

  • Pigott TD (2001) A review of methods for missing data. Educ Res Eval 7(4):353–383. https://doi.org/10.1076/edre.7.4.353.8937

    Article  Google Scholar 

  • Poursafa P, Mansourian M, Motlagh M-E, Ardalan G, Kelishadi R (2014) Is air quality index associated with cardiometabolic risk factors in adolescents? The CASPIAN-III study. Environ Res 134:105–109

    CAS  Google Scholar 

  • Rajagopalan S, Brook RD (2012) Air pollution and type 2 diabetes: mechanistic insights. Diabetes 61(12):3037–3045

    CAS  Google Scholar 

  • Rankin J, Chadwick T, Natarajan M, Howel D, Pearce MS, Pless-Mulloli T (2009) Maternal exposure to ambient air pollutants and risk of congenital anomalies. Environ Res 109(2):181–187

    CAS  Google Scholar 

  • Roberts J, Cooper DW (2001) Pathogenesis and genetics of pre-eclampsia. The Lancet 357(9249):53–56

    CAS  Google Scholar 

  • Robledo CA et al (2015) Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus. Environ Res 137:316–322

    CAS  Google Scholar 

  • Rosa MD et al (2003) Traffic pollutants affect fertility in men. Hum Reprod 18(5):1055–1061

    Google Scholar 

  • Rubes J et al (2005) Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 20(10):2776–2783

    CAS  Google Scholar 

  • Savitz DA et al (2015) Ambient fine particulate matter, nitrogen dioxide, and hypertensive disorders of pregnancy in New York City. Epidemiology (Cambridge, Mass) 26(5):748

    Google Scholar 

  • Schulz M, Romppel M, Grande G (2016) Built environment and health: a systematic review of studies in Germany. J Public Health 40(1):8–15

    Google Scholar 

  • Shah PS, Balkhair T, births KSGoDoPL, (2011) Air pollution and birth outcomes: a systematic review. Environ Int 37(2):498–516

    CAS  Google Scholar 

  • Shen H-N, Hua S-Y, Chiu C-T, Li C-Y (2017) Maternal exposure to air pollutants and risk of gestational diabetes mellitus in Taiwan. Int J Environ Res Public Health 14(12):1604

    Google Scholar 

  • Siddika N, Balogun HA, Amegah AK, Jaakkola JJ (2016) Prenatal ambient air pollution exposure and the risk of stillbirth: systematic review and meta-analysis of the empirical evidence. Occup Environ Med 73(9):573–581

    Google Scholar 

  • Šrám RJ, Binková B, Dejmek J, Bobak M (2005) Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect 113(4):375–382

    Google Scholar 

  • Stieb DM, Chen L, Eshoul M, Judek S (2012) Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res 117:100–111

    CAS  Google Scholar 

  • Stieb DM et al (2015) Associations of pregnancy outcomes and PM2.5 in a national Canadian study. Environ Health Perspect 124(2):243–249

    Google Scholar 

  • van den Hooven EH et al (2011) Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy: the generation R study. Hypertension 57(3):406–412

    Google Scholar 

  • Ver Hoef JM, Boveng PL (2007) Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 88(11):2766–2772. https://doi.org/10.1890/07-0043.1

    Article  Google Scholar 

  • Veras MM et al (2008) Particulate urban air pollution affects the functional morphology of mouse placenta. Biol Reprod 79(3):578–584

    CAS  Google Scholar 

  • Wang M et al (2018) Association between short-term exposure to air pollution and dyslipidemias among type 2 diabetic patients in northwest China: a population-based study. Int J Environ Res Public Health 15(4):631

    Google Scholar 

  • World Health Organization (2006) Occupational and Environmental Health Team‎. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. World Health Organization. https://apps.who.int/iris/handle/10665/69477. Accessed Sept 2020

  • World Health Organization (2017) The cost of a polluted environment: 1.7 million child deaths a year, says WHO. https://www.who.int/en/news-room/detail/06-03-2017-the-cost-of-a-polluted-environment-1-7-million-child-deaths-a-year-says-who. Accessed Sept 2020

  • Wilhelm M, Ritz B (2005) Local variations in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA. Environ Health Perspect 113(9):1212–1221

    CAS  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R, vol 66. Chapman & Hall/CRC, Boca Raton, Florida. ISBN 1-58488-474-6

    Google Scholar 

  • Wood SN (2008) Fast stable direct fitting and smoothness selection for generalized additive models. J R Stat Soc Ser B (Statistical Methodology) 70(3):495–518

    Google Scholar 

  • Wood S (2012) mgcv: mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. R package version 1.7-17. http://CRAN.R-project.org/package=mgcv

  • Wood SN (2017) Generalized additive models: an introduction. R. Chapman and Hall/CRC, Boca Roton

    Google Scholar 

  • Xia B et al (2019) Personal exposure to PM2. 5 constituents associated with gestational blood pressure and endothelial dysfunction. Environ Pollut 250:346–356

    CAS  Google Scholar 

  • Xiong L et al (2019) Acute effects of air pollutants on adverse birth outcomes in Changsha, China: a population data with time-series analysis from 2015 to 2017. Medicine 98(3):1–8

    Google Scholar 

  • Xu X, Hu H, Ha S, Roth J (2014) Ambient air pollution and hypertensive disorder of pregnancy. J Epidemiol Community Health 68(1):13–20

    Google Scholar 

  • Yang S et al (2018a) Ambient air pollution the risk of stillbirth: a prospective birth cohort study in Wuhan, China. Int J Hyg Environ Health 221(3):502–509

    CAS  Google Scholar 

  • Yang Y-L, Yang H-L, Shiao S (2018b) Meta-prediction of MTHFR gene polymorphisms and air pollution on the risk of hypertensive disorders in pregnancy worldwide. Int J Environ Res Public Health 15(2):326

    Google Scholar 

  • Ye X et al (2016) Acute effects of particulate air pollution on the incidence of coronary heart disease in Shanghai, China. PLoS ONE 11(3):e0151119

    Google Scholar 

  • Yorifuji T et al (2012) Residential proximity to major roads and placenta/birth weight ratio. Sci Total Environ 414:98–102

    CAS  Google Scholar 

  • Yorifuji T, Naruse H, Kashima S, Murakoshi T, Doni H (2015) Residential proximity to major roads and obstetrical complications. Sci Total Environ 508:188–192

    CAS  Google Scholar 

  • Zang H et al (2019) Ambient air pollution and the risk of stillbirth: a population-based prospective birth cohort study in the coastal area of China. Environ Sci Pollut Res Int 26(7):6717–6724. https://doi.org/10.1007/s11356-019-04157-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Ms. Yalda Sabbaghan for her kind assistance.

Funding

This study was funded and supported by Ahvaz Jundishapur University of Medical Sciences, Grant no.: APRD-9609.

Author information

Authors and Affiliations

Authors

Contributions

MD, FE and MC conceived and designed the project. MD, GG and RS acquired the data. MD and AM analyzed and interpreted the data. FE, ZS and NK wrote the paper. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Fatemeh Estebsari.

Ethics declarations

Conflict of interest

No conflict of interest was declared by the author.

Ethical approval

Ethics License of the present study was acquired from the Ethics Committee of Ahvaz Jundishapur University of Medical Sciences (Code of ethics: IR.AJUMS.REC.1396.793). According to the national guidelines, studies such as this do not require individual consent.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article was revised due to an error in Table 3.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastoorpoor, M., Khanjani, N., Moradgholi, A. et al. Prenatal exposure to ambient air pollution and adverse pregnancy outcomes in Ahvaz, Iran: a generalized additive model. Int Arch Occup Environ Health 94, 309–324 (2021). https://doi.org/10.1007/s00420-020-01577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-020-01577-8

Keywords

Navigation