Levels of 1-hydroxypyrene in urine of people living in an oil producing region of the Andean Amazon (Ecuador and Peru)

Abstract

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are contaminants with carcinogenic effects but little is known about their presence in environments surrounding oil drilling operations and spills or exposure levels in nearby communities. The objective of this study was to characterize PAH levels in people living near oil drilling operations in relation to fish consumption, occupation, source of water and other socio-demographic characteristics.

Methods

This pilot study examined PAH exposure by measuring 1-hydroxypyrene (1-OHP) in urine samples using high-performance liquid chromatography and fluorescence detection from 75 women and men in the Ecuadorian and Peruvian Amazon living near oil drilling operations and who answered a questionnaire collecting socio-demographic, occupational and dietary information. Data were analyzed using multiple linear regression models.

Results

The mean value of 1-OHP was 0.40 μmol/mol creatinine, 95% CI 0.32–0.46 μmol/mol creatinine. Women who used water from a surface source (for washing clothes or bathing) had almost twice the amount of 1-OHP in their urine (mean 1-OHP = 0.41 μmol/mol creatinine, 95% CI 0.28–0.54 μmol/mol creatinine, n = 23) as women who used water from either a well, a spring or rain (mean 1-OHP = 0.22 μmol/mol creatinine, 95% CI 0.11–0.34 μmol/mol creatinine, n = 6). Men who reported eating a bottom-dwelling species as their most commonly consumed fish (mean 1-OHP = 0.50 μmol/mol creatinine, 95% CI 0.36–0.64 μmol/mol creatinine, n = 31) had twice as much 1-OHP in their urine as men who reported a pelagic fish (mean 1-OHP = 0.25 μmol/mol creatinine, 95% CI 0.15–0.35 μmol/mol creatinine, n = 15), signaling either oral (fish consumption) or dermal (while standing in water fishing benthic species) exposure.

Conclusions

More contact with surface water and benthic fish may result in higher levels of 1-OHP in human urine among the study population. Reducing the amount of oil and wastes entering the waterways in Andean Amazonia would be one way to reduce exposure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adetona O, Li Z, Sjödin A et al (2013) Biomonitoring of polycyclic aromatic hydrocarbon exposure in pregnant women in Trujillo, Peru—comparison of different fuel types used for cooking. Environ Int 53:1–8

    CAS  Article  Google Scholar 

  2. Aguilera F, Méndez J, Pásaro E, Laffon B (2010) Review on the effects of exposure to spilled oils on human health. J Appl Toxicol 30:291–301. doi:10.1002/jat.1521

    CAS  Google Scholar 

  3. Alghamdi MA, Alam MS, Stark C et al (2015) Urinary metabolites of polycyclic aromatic hydrocarbons in Saudi Arabian schoolchildren in relation to sources of exposure. Environ Res 140:495–501. doi:10.1016/j.envres.2015.04.023

    CAS  Article  Google Scholar 

  4. Balise VD, Meng C-X, Cornelius-Green JN, Kassotis CD, Kennedy R, Nagel SC (2016) Systematic review of the association between oil and natural gas extraction processes and human reproduction. Fertil Steril 106:795–819. doi:10.1016/j.fertnstert.2016.07.1099

    CAS  Article  Google Scholar 

  5. Boogaard PJ, van Sittert NJ (1994) Exposure to polycyclic aromatic hydrocarbons in petrochemical industries by measurement of urinary 1-hydroxypyrene. Occup Environ Med 51:250–258. doi:10.1136/oem.51.4.250

    CAS  Article  Google Scholar 

  6. Bouchard M, Viau C (1999) Urinary 1-hydroxypyrene as a biomarker of exposure to polycyclic aromatic hydrocarbons: biological monitoring strategies and methodology for determining biological exposure indices for various work environments. Biomarkers 4:159–187

    CAS  Article  Google Scholar 

  7. Bouchard M, Pinsonneault L, Tremblay C, Weber J-P (2001) Biological monitoring of environmental exposure to polycyclic aromatic hydrocarbons in subjects living in the vicinity of a creosote impregnation plant. Int Arch Occup Environ Health 74:505–513

    CAS  Article  Google Scholar 

  8. Buchet JP, Gennart JP, Mercado-Calderon F, Delavignette JP, Cupers L, Lauwerys R (1992) Evaluation of exposure to polycyclic aromatic hydrocarbons in a coke production and a graphite electrode manufacturing plant: assessment of urinary excretion of 1 hydroxypyrene as a biological indicator of exposure. Br J Ind Med 49:761–768

    CAS  Google Scholar 

  9. Chen B, Hu Y, Jin T, Zheng L, Wang Q, Shen Y, Zhou Y (2007) Higher urinary 1-hydroxypyrene concentration is associated with cooking practice in a Chinese population. Toxicol Lett 171:119–125

    CAS  Article  Google Scholar 

  10. Ciarrocca M, Rosati MV, Tomei F et al (2014) Is urinary 1-hydroxypyrene a valid biomarker for exposure to air pollution in outdoor workers? A meta-analysis. J Expo Sci Environ Epidemiol 24:17–26

    CAS  Article  Google Scholar 

  11. Cocco P, Moore PS, Ennas MG et al (2007) Effect of urban traffic, individual habits, and genetic polymorphisms on background urinary 1-hydroxypyrene excretion. Ann Epidemiol 17:1–8

    Article  Google Scholar 

  12. Comision de Pueblos Andinos Amazonicos y Afroperuanos Ambiente y Ecología (2012) Informe final del grupo de trabajo sobre la situacion indígena de las cuencas de los ríos Tigre, Pastaza. Corrientes y Maranon. Lima, Perú

  13. Cormier SM, Lin ELC, Fulk F, Subramanian B (2000) Estimation of exposure criteria values for biliary polycyclic aromatic hydrocarbon metabolite concentrations in white suckers (Catostomus commersoni). Environ Toxicol Chem 19:1120–1126

    CAS  Article  Google Scholar 

  14. Crowe KM, Newton JC, Kaltenboeck B, Johnson C (2014) Oxidative stress responses of gulf killifish exposed to hydrocarbons from the Deepwater Horizon oil spill: potential implications for aquatic food resources. Environ Toxicol Chem 33:370–374

    CAS  Article  Google Scholar 

  15. D’Andrea MA, Reddy GK (2014) Crude oil spill exposure and human health risks. J Occup Environ Med 56:1029–1041

    Article  Google Scholar 

  16. Darcey D, Everson R, Putman K, Randerath K (1992) DNA adducts and exposure to burning oil. Lancet 339(8791):489

    CAS  Article  Google Scholar 

  17. De Coster S, Koppen G, Bracke M et al (2008) Pollutant effects on genotoxic parameters and tumor-associated protein levels in adults: a cross sectional study. Environ Health 7:26

    Article  Google Scholar 

  18. Elovaara E, Heikkilä P, Pyy L, Mutanen P, Riihimäki V (1995) Significance of dermal and respiratory uptake in creosote workers: exposure to polycyclic aromatic hydrocarbons and urinary excretion of 1-hydroxypyrene. Occup Environ Med 52:196–203

    CAS  Article  Google Scholar 

  19. Fiala Z, Vyskocil A, Krajak V et al (2001) Environmental exposure of small children to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 74:411–420

    CAS  Article  Google Scholar 

  20. Fuentes-Rios D, Orrego R, Rudolph A, Mendoza G, Gavilán JF, Barra R (2005) EROD activity and biliary fluorescence in Schroederichthys chilensis (Guichenot 1848): biomarkers of PAH exposure in coastal environments of the South Pacific Ocean. Chemosphere 61:192–199

    CAS  Article  Google Scholar 

  21. Gallo V, Khan A, Gonzales C et al (2008) Validation of biomarkers for the study of environmental carcinogens: a review. Biomarkers 13:505–534. doi:10.1080/13547500802054611

    CAS  Article  Google Scholar 

  22. Gündel J, Mannschreck C, Büttner K, Ewers U, Angerer J (1996) Urinary levels of 1-hydroxypyrene, 1-, 2-, 3-, and 4-hydroxyphenanthrene in females living in an industrial area of Germany. Arch Environ Contam Toxicol 31:585–590

    Article  Google Scholar 

  23. Ha M, Kwon H, Cheong HK et al (2012) Urinary metabolites before and after cleanup and subjective symptoms in volunteer participants in cleanup of the Hebei Spirit oil spill. Sci Total Environ 429:167–173

    CAS  Article  Google Scholar 

  24. Hansen ÅM, Mathiesen L, Pedersen M, Knudsen LE (2008) Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies—a review. Int J Hyg Environ Health 211:471–503

    CAS  Article  Google Scholar 

  25. He X, Chen W, Liu Z, Chapman R (1991) An epidemiological study of lung cancer in Xuan Wei County, China: current progress. Case-control study on lung cancer and cooking fuel. Environ Health Perspect 94:9–13

    CAS  Article  Google Scholar 

  26. Huang W, Grainger J, Patterson DG et al (2004) Comparison of 1-hydroxypyrene exposure in the US population with that in occupational exposure studies. Int Arch Occup Environ Health 77:491–498

    CAS  Article  Google Scholar 

  27. Hurtig A-K, San Sebastián M (2004) Incidence of childhood leukemia and oil exploitation in the Amazon basin of Ecuador. Int J Occup Environ Health 10:245–250

    Article  Google Scholar 

  28. IARC (1983) Polynuclear aromatic compounds: part 1, chemical environmental and experimental data, vol 32. IARC, Lyon

    Google Scholar 

  29. Incardona JP, Gardner LD, Linbo TL et al (2014) Deepwater horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proc Natl Acad Sci USA 111:E1510–E1518

    CAS  Article  Google Scholar 

  30. Jacob J, Seidel A (2002) Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J Chromatogr B 778:31–47

    CAS  Article  Google Scholar 

  31. Jongeneelen FJ (1994) Biological monitoring of environmental exposure to polycyclic aromatic hydrocarbons; 1-hydroxypyrene in urine of people. Toxicol Lett 72:205–211

    CAS  Article  Google Scholar 

  32. Jongeneelen FJ (2001) Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann Occup Hyg 45:3–13. doi:10.1093/annhyg/45.1.3

    CAS  Article  Google Scholar 

  33. Jongeneelen FJ (2014) A guidance value of 1-hydroxypyrene in urine in view of acceptable occupational exposure to polycyclic aromatic hydrocarbons. Toxicol Lett 231:239–248

    CAS  Article  Google Scholar 

  34. Jongeneelen F, Anzion R, Henderson P (1987) Determination of hydroxylated metabolites of polycyclic aromatic hydrocarbons in urine. J Chromatogr 413:227–232

    CAS  Article  Google Scholar 

  35. Jung JH, Kim M, Yim UH et al (2011) Biomarker responses in pelagic and benthic fish over 1 year following the Hebei Spirit oil spill (Taean, Korea). Mar Pollut Bull 62:1859–1866

    CAS  Article  Google Scholar 

  36. Kalf DF, Crommentuijn T, van de Plassche EJ (1997) Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol Environ Saf 36:89–97

    CAS  Article  Google Scholar 

  37. Kimerling J (1993) Crudo Amaónico. Abya Yala, Quito

    Google Scholar 

  38. Krzyzanowski J (2012) Environmental pathways of potential impacts to human health from oil and gas development in northeast British Columbia, Canada. Environ Rev 20:122–134

    CAS  Article  Google Scholar 

  39. Laffon B, Pásaro E, Valdiglesias V (2016) Effects of exposure to oil spills on human health: updated review. J Toxicol Environ Health Part B 19:105–128

    CAS  Article  Google Scholar 

  40. Lake JL, Norwood C, Dimock C, Robert B (1979) Origins of polycyclic aromatic hydrocarbons in estuarine sediments. Geochim Cosmochim Acta 43:1847–1854

    CAS  Article  Google Scholar 

  41. Levin JO (1995) First international workshop on hydroxypyrene as a biomarker for PAH exposure in man—summary and conclusions. Sci Total Environ 163:165–168

    CAS  Article  Google Scholar 

  42. Li Z, Sandau CD, Romanoff LC, Caudill SP, Sjodin A, Needham LL, Patterson DG Jr (2008) Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environ Res 107:320–331

    CAS  Article  Google Scholar 

  43. Llop S, Ballester F, Estarlich M et al (2008) Urinary 1-hydroxypyrene, air pollution exposure and associated life style factors in pregnant women. Sci Total Environ 407:97–104

    CAS  Article  Google Scholar 

  44. Logan DT (2007) Perspective on ecotoxicology of PAHs to fish. Hum Ecol Risk Assess 13:302–316

    CAS  Article  Google Scholar 

  45. Madany IM, Raveendran E (1992) Polycyclic aromatic hydrocarbons, nickel and vanadium in air particulate matter in Bahrain during the burning of oil fields in Kuwait. Sci Total Environ 116:281–289

    CAS  Article  Google Scholar 

  46. Martínez-Salinas RI, Elena Leal M, Batres-Esquivel LE, Domínguez-Cortinas G, Calderón J, Díaz-Barriga F, Pérez-Maldonado IN (2010) Exposure of children to polycyclic aromatic hydrocarbons in Mexico: assessment of multiple sources. Int Arch Occup Environ Health 83:617–623

    Article  Google Scholar 

  47. McClean MD, Rinehart RD, Ngo L, Eisen EA, Kelsey KT, Herrick RF (2004) Inhalation and dermal exposure among asphalt paving workers. Ann Occup Hyg 48:663–671

    CAS  Google Scholar 

  48. McDiarmid MA, Jacobson-Kram D, Koloder K et al (1995) Increased frequencies of sister chromatid exchange in soldiers deployed to Kuwait. Mutagenesis 10:263–265. doi:10.1093/mutage/10.3.263

    CAS  Article  Google Scholar 

  49. McKenzie LM, Allshouse WB, Byers TE, Bedrick EJ, Serdar B, Adgate JL (2017) Childhood hematologic cancer and residential proximity to oil and gas development. PLoS One 12:e0170423

    Article  Google Scholar 

  50. MEM (1998) Evaluación ambiental Territorial de las Cuencas de los ríos Tigre-Pastaza. Ministerio de Energía y Minas, Lima

    Google Scholar 

  51. Miao Q, Bouchard M, Chen D, Burstyn I, Spinelli JJ, Aronson KJ (2014) Assessing traffic and polycyclic aromatic hydrocarbon exposure in Montreal, Canada. Sci Total Environ 470–471:945–953

    Article  Google Scholar 

  52. Miao Q, Bouchard M, Chen D, Rosenberg MW, Aronson KJ (2015) Commuting behaviors and exposure to air pollution in Montreal, Canada. Sci Total Environ 508:193–198

    CAS  Article  Google Scholar 

  53. Motorykin O, Santiago-Delgado L, Rohlman D et al (2015) Metabolism and excretion rates of parent and hydroxy-PAHs in urine collected after consumption of traditionally smoked salmon for Native American volunteers. Sci Total Environ 514:170–177. doi:10.1016/j.scitotenv.2015.01.083

    CAS  Article  Google Scholar 

  54. Moulton B (1990) An illustration of a pitfall in estimating the effects of aggregate variables on micro units. Rev Econ Stat 72:334–338

    Article  Google Scholar 

  55. Mumford JL, Lee X, Lewtas J, Young TL, Santella RM (1993) DNA adducts as biomarkers for assessing exposure to polycyclic aromatic hydrocarbons in tissues from Xuan Wei women with high exposure to coal combustion emissions and high lung cancer mortality. Environ Health Perspect 99:83–87

    CAS  Article  Google Scholar 

  56. Murawski SA, Hogarth WT, Peebles EB, Barbeiri L (2014) Prevalence of external skin lesions and polycyclic aromatic hydrocarbon concentrations in Gulf of Mexico fishes, post-Deepwater Horizon. Trans Am Fish Soc 143:1084–1097

    CAS  Article  Google Scholar 

  57. Neff J (2002) Bioaccumulation in marine organisms: effect of contaminants from oil well produced water, 1st edn. Elsevier, Ltd, Oxford

    Google Scholar 

  58. Nieto Ó, Aboigor J, Buján R et al (2006) Temporal variation in the levels of polycyclic aromatic hydrocarbons (PAHs) off the Galician Coast after the ‘Prestige’ oil spill. Mar Ecol Prog Ser 328:41–49

    CAS  Article  Google Scholar 

  59. Noh SR, Cheong H-K, Ha M, Eom S-Y, Kim H, Choi Y-H, Paek D (2015) Oxidative stress biomarkers in long-term participants in clean-up work after the Hebei Spirit oil spill. Sci Total Environ 515–516:207–214. doi:10.1016/j.scitotenv.2015.02.039

    Article  Google Scholar 

  60. Pastorelli R, Guanci M, Restano J et al (1999) Seasonal effect on airborne pyrene, urinary 1-hydroxypyrene, and benzo(a)pyrene diol epoxide-hemoglobin adducts in the general population. Cancer Epidemiol Biomark Prev 8:561–565

    CAS  Google Scholar 

  61. Patil RR, Chetlapally S, Bagavandas M (2014) Global review of studies on traffic police with special focus on environmental health effects. Int J Occup Med Environ Health 27:523–535. doi:10.2478/s13382-014-0285-5

    Article  Google Scholar 

  62. Pérez-Maldonado IN, Trejo-Acevedo A, Pruneda-Alvarez LG, Gaspar-Ramirez O, Ruvalcaba-Aranda S, Perez-Vazquez FJ (2013) DDT, DDE, and 1-hydroxypyrene levels in children (in blood and urine samples) from Chiapas and Oaxaca, Mexico. Environ Monit Assess 185:9287–9293

    Article  Google Scholar 

  63. Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat Res Genet Toxicol Environ Mutagen 443:139–147

    CAS  Article  Google Scholar 

  64. Phillips CR, Salazar MH, Salazar SM, Snyder BJ (2006) Contaminant exposures at the 4H shell mounds in the Santa Barbara Channel. Mar Pollut Bull 52:1668–1681

    CAS  Article  Google Scholar 

  65. Poirier M, Weston A, Schoket B et al (1998) Biomonitoring of United States Army soldiers serving in Kuwait in 1991. Cancer Epidemiol Biomark Prev 7:545–551

    CAS  Google Scholar 

  66. Reátegui-Zirena EG, Stewart PM, Whatley A, Chu-Koo F, Sotero-Solis VE, Merino-Zegarra C, Vela-Paima E (2014) Polycyclic aromatic hydrocarbon concentrations, mutagenicity, and Microtox® acute toxicity testing of Peruvian crude oil and oil-contaminated water and sediment. Environ Monit Assess 186:2171–2184. doi:10.1007/s10661-013-3527-2

    Article  Google Scholar 

  67. Rozas LP, Minello TJ, Miles MS (2014) Effect of deepwater horizon oil on growth rates of juvenile penaeid shrimps. Estuar Coasts 37:1403–1414

    CAS  Article  Google Scholar 

  68. Salazar-Coria L, Amezcua-Allieri M, Tenorio-Torres M, González-Macías C (2007) Polyaromatic hydrocarbons (PAHs) and metal evaluation after a diesel spill in Oaxaca, Mexico. Bull Environ Contam Toxicol 79:462–467

    CAS  Article  Google Scholar 

  69. San Sebastian M, Armstrong B, Cordoba JA, Stephens C (2001) Exposures and cancer incidence near oil fields in the Amazon basin of Ecuador. Occup Environ Med 58:517–522

    CAS  Article  Google Scholar 

  70. San Sebastian M, Armstrong B, Stephens C (2002) Outcomes of pregnancy among women living in the proximity of oil fields in the Amazon Basin of Ecuador. Int J Occup Environ Health 8:312

    Article  Google Scholar 

  71. Scherer G, Frank S, Riedel K, Meger-Kossien I, Renner T (2000) Biomonitoring of exposure to polycyclic aromatic hydrocarbons of nonoccupationally exposed persons. Cancer Epidemiol Biomark Prev 9:373–380

    CAS  Google Scholar 

  72. Shiue I (2015) Are urinary polyaromatic hydrocarbons associated with adult hypertension, heart attack, and cancer? USA NHANES, 2011–2012. Environ Sci Pollut Res 22:16962–16968. doi:10.1007/s11356-015-4922-8

    CAS  Article  Google Scholar 

  73. Soriano JA, Viñas L, Franco MA, González JJ, Nguyen MH, Bayona JM, Albaigés J (2007) Spatial and temporal trends of polycyclic aromatic hydrocarbons in wild mussels from the Cantabrian coast (N Spain) after the Prestige oil spill. J Environ Monit 9:1018–1023

    CAS  Article  Google Scholar 

  74. Sram RJ, Binkova B, Dejmek J, Bobak M (2005) Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect 113:375–382

    CAS  Article  Google Scholar 

  75. Suwan-ampai P, Navas-Acien A, Strickland PT, Agnew J (2009) Involuntary tobacco smoke exposure and urinary levels of polycyclic aromatic hydrocarbons in the United States, 1999 to 2002. Cancer Epidemiol Biomark Prev 18:884–893. doi:10.1158/1055-9965.epi-08-0939

    CAS  Article  Google Scholar 

  76. Torres-Dosal A, Pérez-Maldonado IN, Jasso-Pineda Y, Martínez Salinas RI, Alegría-Torres JA, Díaz-Barriga F (2008) Indoor air pollution in a Mexican indigenous community: evaluation of risk reduction program using biomarkers of exposure and effect. Sci Total Environ 390:362–368

    CAS  Article  Google Scholar 

  77. Turczynowicz L, Fitzgerald DJ, Nitschke M, Mangas S, McLean A (2007) Site contamination health risk assessment case study involving tenant relocation from a former gasworks site. J Toxicol Environ Health Part A 70:1638–1653

    CAS  Article  Google Scholar 

  78. Uno S, Koyama J, Kokushi E et al (2010) Monitoring of PAHs and alkylated PAHs in aquatic organisms after 1 month from the Solar I oil spill off the coast of Guimaras Island, Philippines. Environ Monit Assess 165:501–515

    CAS  Article  Google Scholar 

  79. van Larebeke NA, Bracke ME, Nelen V, Koppen G, Schoeters G, Van Loon H, Vlietinck R (2006) Differences in tumor-associated protein levels among middle-age Flemish women in association with area of residence and exposure to pollutants. Environ Health Perspect 114:887–892

    Article  Google Scholar 

  80. van Wijnen J, Slob R, Jongmans-Liedekerken G, van de Weerdt R, Woudenberg F (1996) Exposure to polycyclic aromatic hydrocarbons among Dutch children. Environ Health Perspect 104:530–534

    Article  Google Scholar 

  81. VanRooij JG, Bodelier-Bade MM, Jongeneelen FJ (1993) Estimation of individual dermal and respiratory uptake of polycyclic aromatic hydrocarbons in 12 coke oven workers. Br J Ind Med 50:623–632

    CAS  Google Scholar 

  82. Viau C, Carrier G, Vyskocil A, Dodd C (1995) Urinary excretion kinetics of 1-hydroxypyrene in volunteers exposed to pyrene by the oral and dermal route. Sci Total Environ 163:179–186

    CAS  Article  Google Scholar 

  83. Viau C, Hakizimana G, Bouchard M (2000) Indoor exposure to polycyclic aromatic hydrocarbons and carbon monoxide in traditional houses in Burundi. Int Arch Occup Environ Health 73:331–338

    CAS  Article  Google Scholar 

  84. Vyskocil A, Fiala Z, Fialova D, Krajak V, Viau C (1997) Environmental exposure to polycyclic aromatic hydrocarbons in Czech Republic. Hum Exp Toxicol 16:589–595. doi:10.1177/096032719701601006

    CAS  Article  Google Scholar 

  85. Wang Y, Fan R, Dong Y, Zhang W, Sheng G, Fu J (2014a) Urinary monohydroxylated metabolites of polycyclic aromatic hydrocarbons in children living in city and rural residences in Southern China. Environ Technol 35:2973–2981

    CAS  Article  Google Scholar 

  86. Wang Y, Zhang W, Fan R, Sheng G, Fu J (2014b) Biological monitoring of environmental exposure to polycyclic aromatic hydrocarbons in subjects living in the area of recycling electronic garbage, in Southern China. Environ Sci Pollut Res 21:9161–9168

    CAS  Article  Google Scholar 

  87. Webb J (2010) Environmental contamination of fish and humans through deforestation and oil extraction in Andean Amazonia. Doctoral thesis, McGill University

  88. Webb J, Mainville N, Mergler D et al (2004) Mercury in fish-eating communities of the Andean Amazon, Napo River Valley, Ecuador. EcoHealth 1:59–71

    Article  Google Scholar 

  89. Webb J, Coomes OT, Mergler D, Ross N (2016) Mercury concentrations in urine of Amerindian populations near oil fields in the Peruvian and Ecuadorian Amazon. Environ Res 151:344–350

    CAS  Article  Google Scholar 

  90. Wernersson A-S (2004) Aquatic ecotoxicity due to oil pollution in the Ecuadorian Amazon. Aquat Ecosyst Health Manag 7:127–136

    CAS  Article  Google Scholar 

  91. Wilhelm M, Hardt J, Schulz C, Angerer J (2008) New reference value and the background exposure for the PAH metabolites 1-hydroxypyrene and 1- and 2-naphthol in urine of the general population in Germany: basis for validation of human biomonitoring data in environmental medicine. Int J Hyg Environ Health 211:447–453

    CAS  Article  Google Scholar 

  92. World Health Organization (2003) Polynuclear aromatic hydrocarbons in Drinking-water: background document for development of WHO Guidelines for Drinking-water Quality. World Health Organization, Geneva

    Google Scholar 

  93. Yin WQ, Wang L, Li RR, Cao SY, Ye YT, Li L (2014) Personal exposure levels of PAHs in the general population in northern rural area of Jiangsu Province, China. J Environ Sci Health Part A Toxic Hazard Subst Environ Eng 49:281–286

    CAS  Article  Google Scholar 

  94. Yu Y, Liu Z, He Y, Zhang Y, Lin H, Wang Q, Sun P (2012) Analysis and risk assessment of air benzo(a)pyrene and children urinary 1-hydroxypyrene in Lanzhou City. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae 32:2332–2338

    CAS  Google Scholar 

  95. Yuan TH, Shie RH, Chin YY, Chan CC (2015) Assessment of the levels of urinary 1-hydroxypyrene and air polycyclic aromatic hydrocarbon in PM2.5 for adult exposure to the petrochemical complex emissions. Environ Res 136:219–226

    CAS  Article  Google Scholar 

  96. Yusta-García R, Orta-Martínez M, Mayor P, González-Crespo C, Rosell-Melé A (2017) Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers. Environ Pollut 225:370–380. doi:10.1016/j.envpol.2017.02.063

    Article  Google Scholar 

  97. Zhu L, Wang J (2003) Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere 50:611–618

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Analysis of 1-hydroxypyrene in urine samples was performed at the First Nations and Inuit Health Branch Laboratory (FNIHBL), Health Canada in Ottawa. Creatinine analysis was carried out at the Centre de Toxicologie du Québec (CTQ) of the Institut national de santé publique du Québec (INSPQ) by a lab technician. Sébastian Breau provided advice on the clustered linear regressions. The authors would also like to thank the three reviewers for their helpful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jena Webb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

Funding for this research was provided by the following organizations: Canada-Latin America and the Caribbean Research Exchange Grants (LACREG)-Association of Universities and Colleges of Canada (AUCC), Social Science and Humanities Research Council (SSHRC) Internal McGill Grant-research grant, and EcoHealth Research Grant-International Development Research Centre (IDRC) (Grant no. 101860-001). The corresponding author had doctoral scholarships from the Fonds de recherche du Québec-Nature et technologies (FRQNT) and the Natural Sciences and Engineering Research Council of Canada (NSERC). Funders played no role in study design; in the collection, analysis or interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Webb, J., Coomes, O.T., Mergler, D. et al. Levels of 1-hydroxypyrene in urine of people living in an oil producing region of the Andean Amazon (Ecuador and Peru). Int Arch Occup Environ Health 91, 105–115 (2018). https://doi.org/10.1007/s00420-017-1258-3

Download citation

Keywords

  • Polycyclic aromatic hydrocarbons (PAHs)
  • Pyrene
  • 1-Hydroxypyrene (1-OHP)
  • Oil contamination
  • Petroleum extraction
  • Amazon