Skip to main content

Advertisement

Log in

Using exposure windows to explore an elusive biomarker: blood manganese

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Purpose

We sought to understand the time course between exposure to manganese (Mn) and uptake into the blood, to allow a more meaningful interpretation of exposure biomarker data, and to determine the utility of blood as a biomarker of Mn exposure.

Methods

Welder trainees were monitored over the course of a five-quarter training program. Each quarter, trainees gave eight blood samples and had personal air monitoring four times. A mixed model was fit to obtain estimates of airborne exposure by welding type (fixed effect), adjusted for subject (random effect). Considering weekends and days absent as zero exposure, estimated exposures were summed over various exposure windows and related to measured blood manganese (MnB) using a mixed model.

Results

A relationship consistent with zero was found between MnB and modeled 1 or 7 days of exposure. After 30 days of preceding exposure, a 1 mg-days/m3 increase in air Mn is associated with a 0.57 ng/mL increase in MnB (95 % CI −0.04, 1.19). Considering a 90-day exposure window and a cumulative exposure window, a 1 mg-days/m3 increase in air Mn is associated with a 0.26 (95 % CI 0.005, 0.51) and 0.09 (95 % CI 0.006, 0.17) ng/mL increase in MnB, respectively.

Conclusions

From this analysis, MnB may begin to act as a biomarker of Mn exposure over longer time periods, or at higher levels of exposure. This novel study design allowed investigation of how MnB relates to different time windows of exposure, representing the most robust Mn exposure assessment in the biomarker literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Antonini JM et al (2006a) Design, construction, and characterization of a novel robotic welding fume generator and inhalation exposure system for laboratory animals. J Occup Environ Hyg 3:194–203. doi:10.1080/15459620600584352 (quiz D145)

    Article  CAS  Google Scholar 

  • Antonini JM, Santamaria AB, Jenkins NT, Albini E, Lucchini R (2006b) Fate of manganese associated with the inhalation of welding fumes: potential neurological effects. Neurotoxicology 27:304–310. doi:10.1016/j.neuro.2005.09.001

    Article  CAS  Google Scholar 

  • Apostoli P, Lucchini R, Alessio L (2000) Are current biomarkers suitable for the assessment of manganese exposure in individual workers? Am J Ind Med 37:283–290

    Article  CAS  Google Scholar 

  • Aschner M (2000) Manganese: brain transport and emerging research needs. Environ Health Perspect 108(Suppl 3):429–432

    Article  CAS  Google Scholar 

  • Aschner M, Erikson KM, Dorman DC (2005) Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35:1–32

    Article  CAS  Google Scholar 

  • Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147. doi:10.1016/j.taap.2007.03.001

    Article  CAS  Google Scholar 

  • Bader M, Dietz MC, Ihrig A, Triebig G (1999) Biomonitoring of manganese in blood, urine and axillary hair following low-dose exposure during the manufacture of dry cell batteries. Int Arch Occup Environ Health 72:521–527

    Article  CAS  Google Scholar 

  • Baker MG, Simpson CD, Stover B, Sheppard L, Checkoway H, Racette BA, Seixas NS (2014) Blood manganese as an exposure biomarker: state of the evidence. J Occup Environ Hyg 11:210–217. doi:10.1080/15459624.2013.852280

    Article  CAS  Google Scholar 

  • Baker MG, Criswell SR, Racette BA, Simpson CD, Sheppard L, Checkoway H, Seixas NS (2015a) Neurological outcomes associated with low-level manganese exposure in an inception cohort of asymptomatic welding trainees. Scand J Work Environ Health 41:94–101. doi:10.5271/sjweh.3466

    Article  Google Scholar 

  • Baker MG, Simpson CD, Sheppard L, Stover B, Morton J, Cocker J, Seixas N (2015b) Variance components of short-term biomarkers of manganese exposure in an inception cohort of welding trainees. J Trace Elem Med Biol 29:123–129. doi:10.1016/j.jtemb.2014.05.004

    Article  CAS  Google Scholar 

  • Berlinger B, Ellingsen DG, Naray M, Zaray G, Thomassen Y (2008) A study of the bio-accessibility of welding fumes. J Environ Monit 10:1448–1453. doi:10.1039/b806631k

    Article  CAS  Google Scholar 

  • Bocca B, Alimonti A, Forte G, Petrucci F, Pirola C, Senofonte O, Violante N (2003) High-throughput microwave-digestion procedures to monitor neurotoxic elements in body fluids by means of inductively coupled plasma mass spectrometry. Anal Bioanal Chem 377:65–70. doi:10.1007/s00216-003-2029-4

    Article  CAS  Google Scholar 

  • Bowler RM et al (2007) Dose-effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup Environ Med 64:167–177. doi:10.1136/oem.2006.028761

    Article  CAS  Google Scholar 

  • Calne DB, Chu NS, Huang CC, Lu CS, Olanow W (1994) Manganism and idiopathic parkinsonism: similarities and differences. Neurology 44:1583–1586

    Article  CAS  Google Scholar 

  • Chia SE, Foo SC, Gan SL, Jeyaratnam J, Tian CS (1993) Neurobehavioral functions among workers exposed to manganese ore. Scand J Work Environ Health 19:264–270

    Article  CAS  Google Scholar 

  • Criswell SR, Perlmutter JS, Videen TO, Moerlein SM, Flores HP, Birke AM, Racette BA (2011) Reduced uptake of [(1)(8)F]FDOPA PET in asymptomatic welders with occupational manganese exposure. Neurology 76:1296–1301. doi:10.1212/WNL.0b013e3182152830

    Article  CAS  Google Scholar 

  • Criswell SR et al (2012) Basal ganglia intensity indices and diffusion weighted imaging in manganese-exposed welders. Occup Environ Med 69:437–443. doi:10.1136/oemed-2011-100119

    Article  Google Scholar 

  • Dorman DC, Struve MF, James RA, Marshall MW, Parkinson CU, Wong BA (2001) Influence of particle solubility on the delivery of inhaled manganese to the rat brain: manganese sulfate and manganese tetroxide pharmacokinetics following repeated (14-day) exposure. Toxicol Appl Pharmacol 170:79–87. doi:10.1006/taap.2000.9088

    Article  CAS  Google Scholar 

  • Ellingsen DG, Dubeikovskaya L, Dahl K, Chashchin M, Chashchin V, Zibarev E, Thomassen Y (2006) Air exposure assessment and biological monitoring of manganese and other major welding fume components in welders. J Environ Monit 8:1078–1086

    Article  CAS  Google Scholar 

  • Grass DS et al (2010) Airborne particulate metals in the New York City subway: a pilot study to assess the potential for health impacts. Environ Res 110:1–11. doi:10.1016/j.envres.2009.10.006

    Article  CAS  Google Scholar 

  • Hobson A, Seixas N, Sterling D, Racette BA (2011) Estimation of particulate mass and manganese exposure levels among welders. Ann Occup Hyg 55:113–125. doi:10.1093/annhyg/meq069

    Article  CAS  Google Scholar 

  • Järvisalo J, Olkinuora M, Kiilunen M, Kivistö H, Ristola P, Tossavainen A, Aitio A (1992) Urinary and blood manganese in occupationally nonexposed populations and in manual metal arc welders of mild steel. Int Arch Occup Environ Health 63:495–501

    Article  Google Scholar 

  • Laohaudomchok W, Lin X, Herrick RF, Fang SC, Cavallari JM, Christiani DC, Weisskopf MG (2011) Toenail, blood, and urine as biomarkers of manganese exposure. J Occup Environ Med 53:506–510. doi:10.1097/JOM.0b013e31821854da

    Article  CAS  Google Scholar 

  • Myers JE et al (2003) The nervous system effects of occupational exposure on workers in a South African manganese smelter. Neurotoxicology 24:885–894. doi:10.1016/S0161-813X(03)00081-0

    Article  CAS  Google Scholar 

  • Pesch B et al (2012) Levels and predictors of airborne and internal exposure to manganese and iron among welders. J Expo Sci Environ Epidemiol 22:291–298. doi:10.1038/jes.2012.9

    Article  CAS  Google Scholar 

  • Racette BA, Tabbal SD, Jennings D, Good L, Perlmutter JS, Evanoff B (2005) Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology 64:230–235. doi:10.1212/01.WNL.0000149511.19487.44

    Article  CAS  Google Scholar 

  • Reiss B, Simpson CD, Baker MG, Stover B, Sheppard L, Seixas NS (2015) Hair manganese as an exposure biomarker among welders. Ann Occ Hyg. doi:10.1093/annhy/mev064

    Google Scholar 

  • Rodrigues JL, Batista BL, Nunes JA, Passos CJS, Barbosa F (2008) Evaluation of the use of human hair for biomonitoring the deficiency of essential and exposure to toxic elements. Sci Total Environ 405:370–376. doi:10.1016/j.scitotenv.2008.06.002

    Article  CAS  Google Scholar 

  • Roels H, Lauwerys R, Genet P, Sarhan MJ, de Fays M, Hanotiau I, Buchet JP (1987) Relationship between external and internal parameters of exposure to manganese in workers from a manganese oxide and salt producing plant. Am J Ind Med 11:297–305

    Article  CAS  Google Scholar 

  • Smith D, Gwiazda R, Bowler R, Roels H, Park R, Taicher C, Lucchini R (2007) Biomarkers of Mn exposure in humans. Am J Ind Med 50:801–811. doi:10.1002/ajim.20506

    Article  CAS  Google Scholar 

  • Sriram K, Lin GX, Jefferson AM, Roberts JR, Andrews RN, Kashon ML, Antonini JM (2012) Manganese accumulation in nail clippings as a biomarker of welding fume exposure and neurotoxicity. Toxicology 291:73–82. doi:10.1016/j.tox.2011.10.021

    Article  CAS  Google Scholar 

  • Tjalve H, Henriksson I (1999) Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20:181–195

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency (1998) Method 6020A (SW-846): inductively coupled plasma-mass spectrometry revision 1. http://www2.epa.gov/homeland-security-research/epa-method-6020a-sw-846-inductively-coupled-plasma-mass-spectrometry. Accessed 30 Sept 2015

  • Vitarella D, Wong BA, Moss OR, Dorman DC (2000) Pharmacokinetics of inhaled manganese phosphate in male Sprague-Dawley rats following subacute (14-day) exposure. Toxicol Appl Pharmacol 163:279–285

    Article  CAS  Google Scholar 

  • Zheng W, Kim H, Zhao Q (2000) Comparative toxicokinetics of manganese chloride and methylcyclopentadienyl manganese tricarbonyl (MMT) in Sprague-Dawley rats. Toxicol Sci 54:295–301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number R01ES017809. Marissa Baker was further supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under the Biostatistics, Epidemiologic, and Bioinformatics Training in Environmental Health, Award Number T32ES015459. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marissa G. Baker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, M.G., Stover, B., Simpson, C.D. et al. Using exposure windows to explore an elusive biomarker: blood manganese. Int Arch Occup Environ Health 89, 679–687 (2016). https://doi.org/10.1007/s00420-015-1105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-015-1105-3

Keywords

Navigation