Skip to main content

Advertisement

Log in

The effect of the number of consecutive night shifts on diurnal rhythms in cortisol, melatonin and heart rate variability (HRV): a systematic review of field studies

  • Review
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this review is to summarize the current knowledge from field studies on how many consecutive night shifts are required for adaptation of diurnal rhythms in cortisol, melatonin and heart rate variability (HRV) to night work.

Methods

A systematic search of the databases PubMed and Web of Science resulted in 18 studies selected for review.

Results

Cortisol was measured in five studies, melatonin in 11 studies and HRV in four studies. Diurnal rhythms were assessed by use of several different measures based on three to eight samples per day for cortisol and melatonin and 24-h recordings for HRV. Most of the studies in the review were small studies with less than 30 participants, and most studies evaluated diurnal rhythms after only two consecutive night shifts whereas only six studies used seven or more consecutive night shifts. The majority of studies found that adaptation to night work had not occurred after two consecutive night shifts, whereas a small number found evidence for full adaptation after seven consecutive night shifts based on diurnal rhythms in cortisol and melatonin.

Conclusion

There are methodological differences in the field studies analyzing diurnal rhythms and large diversity in the occupational fields studied. Nevertheless, we conclude that diurnal rhythms in cortisol, melatonin and HRV are not adapted to night work after 1–3 consecutive night shifts. Studies are needed to establish how many consecutive night shifts are needed for full adaptation of diurnal rhythms to night work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Anjum B, Verma NS, Tiwari S, Singh R, Mahdi AA, Singh RB, Singh RK (2011) Association of salivary cortisol with chronomics of 24 h ambulatory blood pressure/heart rate among night shift workers. Biosci Trends 5:182–188

    Article  CAS  Google Scholar 

  • Arendt J (1986) Assay of melatonin and its metabolites: results in normal and unusual environments. J Neural Transm Suppl 21:11–33

    CAS  Google Scholar 

  • Arendt J (1995) Melatonin and the mammalian pineal gland. Chapman & Hall, Cambridge, pp 1–331

    Google Scholar 

  • Barnes RG, Deacon SJ, Forbes MJ, Arendt J (1998a) Adaptation of the 6-sulphatoxymelatonin rhythm in shiftworkers on offshore oil installations during a 2-week 12-h night shift. Neurosci Lett 241:9–12

    Article  CAS  Google Scholar 

  • Barnes RG, Forbes MJ, Arendt J (1998b) Shift type and season affect adaptation of the 6-sulphatoxymelatonin rhythm in offshore oil rig workers. Neurosci Lett 252:179–182

    Article  CAS  Google Scholar 

  • Bjorvatn B, Stangenes K, Oyane N, Forberg K, Lowden A, Holsten F, Akerstedt T (2006) Subjective and objective measures of adaptation and readaptation to night work on an oil rig in the North Sea. Sleep 29:821–829

    Google Scholar 

  • Bøggild H, Knutsson A (1999) Shift work, risk factors and cardiovascular disease. Scand J Work Environ Health 25:85–99

    Article  Google Scholar 

  • Boivin DB, Boudreau P, Tremblay GM (2012) Phototherapy and orange-tinted goggles for night-shift adaptation of police officers on patrol. Chronobiol Int 29:629–640

    Article  Google Scholar 

  • Bonde JPE, Andersen JH, Frost P, Kærgaard A, Kolstad HA, Thulstrup AM (2007) Helbredsundersøgelser ved natarbejde. Ugeskr Laeger 169:2005–2007

    Google Scholar 

  • Bonde JP, Hansen J, Kolstad HA, Mikkelsen S, Olsen JH, Blask DE, Harma M, Kjuus H, de Koning HJ, Olsen J, Moller M, Schernhammer ES, Stevens RG, Akerstedt T (2012) Work at night and breast cancer-report on evidence-based options for preventive actions. Scand J Work Environ Health 38:380–390

    Article  Google Scholar 

  • Bonnemeier H, Richardt G, Potratz J, Wiegand UK, Brandes A, Kluge N, Katus HA (2003) Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol 14:791–799

    Article  Google Scholar 

  • Borugian MJ, Gallagher RP, Friesen MC, Switzer TF, Aronson KJ (2005) Twenty-four-hour light exposure and melatonin levels among shift workers. J Occup Environ Med 47:1268–1275

    Article  CAS  Google Scholar 

  • Buijs RM, van Eden CG, Goncharuk VD, Kalsbeek A (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177:17–26

    Article  CAS  Google Scholar 

  • Cadore E, Lhullier F, Brentano M, Silva E, Ambrosini M, Spinelli R, Silva R, Kruel L (2008) Correlations between serum and salivary hormonal concentrations in response to resistance exercise. J Sports Sci 26:1067–1072

    Article  Google Scholar 

  • Choosong T, Arporn S, Chaikittiporn C (2006) A study of melatonin levels and stress in female shift workers. Southeast Asian J Trop Med Public Health 37:1048–1053

    CAS  Google Scholar 

  • Collins SM, Karasek RA, Costas K (2005) Job strain and autonomic indices of cardiovascular disease risk. Am J Ind Med 48:182–193

    Article  Google Scholar 

  • Costa G, Ghirlanda G, Tarondi G, Minors D, Waterhouse J (1994) Evaluation of a rapidly rotating shift system for tolerance of nurses to nightwork. Int Arch Occup Environ Health 65:305–311

    Article  CAS  Google Scholar 

  • Costa G, Haus E, Stevens R (2010) Shift work and cancer—considerations on rationale, mechanisms, and epidemiology. Scand J Work Environ Health 36:163–179

    Article  Google Scholar 

  • Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne CA, Schouten EG (2000) Low heart rate variability in a 2-min rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis risk in communities. Circulation 102:1239–1244

    Article  CAS  Google Scholar 

  • Dula DJ, Dula NL, Hamrick C, Wood GC (2001) The effect of working serial night shifts on the cognitive functioning of emergency physicians. Ann Emerg Med 38:152–155

    Article  CAS  Google Scholar 

  • Ferguson SA, Kennaway DJ, Baker A, Lamond N, Dawson D (2012) Sleep and circadian rhythms in mining operators: limited evidence of adaptation to night shifts. Appl Ergon 43:695–701

    Article  Google Scholar 

  • Figueiro MG, Plitnick B, Rea MS (2014) The effects of chronotype, sleep schedule and light/dark pattern exposures on circadian phase. Sleep Med

  • Folkard S (2008) Do permanent night workers show circadian adjustment? A review based on the endogenous melatonin rhythm. Chronobiol Int 25:215–224

    Article  Google Scholar 

  • Frost P, Kolstad HA, Bonde JP (2009) Shift work and the risk of ischemic heart disease—a systematic review of the epidemiologic evidence. Scand J Work Environ Health 35:163–179

    Article  Google Scholar 

  • Furlan R, Barbic F, Piazza S, Tinelli M, Seghizzi P, Malliani A (2000) Modifications of cardiac autonomic profile associated with a shift work schedule of work. Circulation 102:1912–1916

    Article  CAS  Google Scholar 

  • Garde AH, Persson R, Hansen AM, Österberg K, Ørbæk P, Eek FC, Karlson B (2008) Effects of lifestyle factors on concentrations of salivary cortisol in healthy individuals. Scand J Clin Lab Invest 49:242–250

    Google Scholar 

  • Gatti R, Antonelli G, Prearo M, Spinella P, Cappellin E, De Palo EF (2009) Cortisol assays and diagnostic laboratory procedures in human biological fluids. Clin Biochem 42:1205–1217

    Article  CAS  Google Scholar 

  • Gibbs M, Hampton S, Morgan L, Arendt J (2002) Adaptation of the circadian rhythm of 6-sulphatoxymelatonin to a shift schedule of seven nights followed by seven days in offshore oil installation workers. Neurosci Lett 325:91–94

    Article  CAS  Google Scholar 

  • Gibbs M, Hampton S, Morgan L, Arendt J (2007) Predicting circadian response to abrupt phase shift: 6-sulphatoxymelatonin rhythms in rotating shift workers offshore. J Biol Rhythms 22:368–370

    Article  CAS  Google Scholar 

  • Grandin LD, Alloy LB, Abramson LY (2006) The social zeitgeber theory, circadian rhythms, and mood disorders: review and evaluation. Clin Psychol Rev 26:679–694

    Article  Google Scholar 

  • Griffiths JD, McCutcheont C, Silbert BS, Maruff P (2006) A prospective observational study of the effect of night duty on the cognitive function of anaesthetic registrars. Anaesth Intensive Care 34:621–628

    CAS  Google Scholar 

  • Grundy A, Tranmer J, Richardson H, Graham CH, Aronson KJ (2011) The influence of light at night exposure on melatonin levels among Canadian rotating shift nurses: cancer epidemiology. Biomark Prev 20:2404–2412

    Article  CAS  Google Scholar 

  • Hansen ÅM, Garde AH, Hansen J (2006) Diurnal urinary 6-sulfatoxymelatonin levels among healthy danish nurses during work and leisure time. Chronobiol Int 23:1203–1215

    Article  CAS  Google Scholar 

  • Hansen JH, Geving IH, Reinertsen RE (2010) Adaptation rate of 6-sulfatoxymelatonin and cognitive performance in offshore fleet shift workers: a field study. Int Arch Occup Environ Health 83:607–615

    Article  CAS  Google Scholar 

  • Harris A, Waage S, Ursin H, Hansen ÅM, Bjorvatn B, Eriksen HR (2010) Cortisol, reaction time test and health among offshore shift workers. Psychoneuroendocrinology 35:1339–1347

    Article  CAS  Google Scholar 

  • Haus E, Smolensky M (2006) Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes Control 17:489–500

    Article  Google Scholar 

  • Haus EL, Smolensky MH (2013) Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev 17:273–284

    Article  Google Scholar 

  • Hofstra WA, De Weerd AW (2008) How to assess circadian rhythm in humans: a review of literature. Epilepsy Behav 13:438–444

    Article  Google Scholar 

  • Jensen MA, Hansen AM, Abrahamsson P, Norgaard AW (2011) Development and evaluation of a liquid chromatography tandem mass spectrometry method for simultaneous determination of salivary melatonin, cortisol and testosterone. J Chromatogr B Analyt Technol Biomed Life Sci. 879:2527

    Article  CAS  Google Scholar 

  • Kantermann T, Wehrens SM, Ulhoa MA, Moreno C, Skene DJ (2012) Noisy and individual, but doable: shift-work research in humans. Prog Brain Res 199:399–411

    Article  Google Scholar 

  • Kleiger RE, Stein PK, Bigger JT Jr (2005) Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol 10:88–101

    Article  Google Scholar 

  • Knutsson A, Bøggild H (2010) Gastrointestinal disorders among shift workers. Scand J Work Environ Health 36:85–95

    Article  Google Scholar 

  • Kobayashi F, Furui H, Akamatsu Y, Watanabe T, Horibe H (1997) Changes in psychophysiological functions during night shift in nurses. Influence of changing from a full-day to a half-day work shift before night duty. Int Arch Occup Environ Health 69:83–90

    Article  CAS  Google Scholar 

  • Kudielka BM, Buchtal J, Uhde A, Wüst S (2007) Circadian cortisol profiles and psychological self-reports in shift workers with and without recent change in the shift rotation system. Biol Psychol 74:92–103

    Article  Google Scholar 

  • Lamond N, Dorrian J, Roach GD, McCulloch K, Holmes AL, Burgess HJ, Fletcher A, Dawson D (2003) The impact of a week of simulated night work on sleep, circadian phase, and performance. Occup Environ Med 60

  • Lamond N, Dorrian J, Burgess HJ, Holmes AL, Roach GD, McCulloch K, Fletcher A, Dawson D (2004) Adaptation of performance during a week of simulated night work. Ergonomics 47:154–165

    Article  Google Scholar 

  • Malliani A, Pagani M, Montano N, Mela GS (1998) Sympathovagal balance: a reappraisal. Circulation 98:2640–2643

    Article  CAS  Google Scholar 

  • McEwen BS, Karatsoreos IN (2015) Sleep deprivation and circadian disruption: stress, allostasis, and allostatic load. Sleep Med Clin 10:1–10

    Article  Google Scholar 

  • Merkus SL, Holte KA, Huysmans MA, Hansen AM, van de Ven PM, van MW, van der Beek AJ (2015) Neuroendocrine recovery after 2-week 12-h day and night shifts: an 11-day follow-up. Int Arch Occup Environ Health 88:247–257

    Article  CAS  Google Scholar 

  • Midwinter MJ, Arendt J (1991) Adaptation of the melatonin rhythm in human subjects following night-shift work in Antarctica. Neurosci Lett 122:195–198

    Article  CAS  Google Scholar 

  • Mirick DK, Davis S (2008) Melatonin as a biomarker of circadian dysregulation. Cancer Epidemiol Biomark Prev 17:3306–3313

    Article  CAS  Google Scholar 

  • Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90:1826–1831

    Article  CAS  Google Scholar 

  • Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelly P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193

    Article  CAS  Google Scholar 

  • Puttonen S, Härmä M, Hublin C (2010) Shift work and cardiovascular disease—pathways from circadian stress to morbidity. Scand J Work Environ Health 36:96–108

    Article  Google Scholar 

  • Rauchenzauner M, Ernst F, Hintringer F, Ulmer H, Ebenbichler CF, Kasseroler MT, Joannidis M (2009) Arrhythmias and increased neuro-endocrine stress response during physicians’ night shifts: a randomized cross-over trial. Eur Heart J 30:2606–2613

    Article  Google Scholar 

  • Roden M, Koller M, Pirich K, Vierhapper H, Waldhauser F (1993) The circadian melatonin and cortisol secretion pattern in permanent night shift workers. Am J Physiol 265:R261–R267

    CAS  Google Scholar 

  • Rosmond R, Björntorp P (2000) Occupational status, cortisol secretory pattern, and visceral obesity in middle-aged men. Obes Res 8:445–450

    Article  CAS  Google Scholar 

  • Ross JK, Arendt J, Horne J, Haston W (1995) Night-shift work in Antarctica: sleep characteristics and bright light treatment. Physiol Behav 57:1169–1174

    Article  CAS  Google Scholar 

  • Sallinen M, Kecklund G (2010) Shift work, sleep and sleepiness—differences between shift schedules and systems. Scand J Work Environ Health 36:121–133

    Article  Google Scholar 

  • Sargent C, Darwent D, Ferguson SA, Kennaway DJ, Roach GD (2012) Sleep restriction masks the influence of the circadian process on sleep propensity. Chronobiol Int 29:565–571

    Article  Google Scholar 

  • Stevens RG, Rea MS (2001) Light in the built environment: potential role of circadian disruption in endocrine disruption and breast cancer. Cancer Causes Control 12:279–287

    Article  CAS  Google Scholar 

  • Stevens RG, Hansen J, Costa G, Haus E, Kauppinen T, Aronson KJ, Castaño-Vinyals G, Davis S, Frings-Dresen MHW, Fritschi L, Kogevinas M, Kogi K, Lie JA, Lowden A, Peplonska B, Pesch B, Pukkala E, Schernhammer E, Travis RC, Vermeulen R, Zheng T, Cogliano V, Straif K (2011) Considerations of circadian impact for defining ‘shift work’ in cancer studies: IARC Working Group Report. Occup Environ Med 68:154–162

    Article  Google Scholar 

  • Task Force of the European Society of Cardiology, The North American Society of Pacing and Electrophysiology (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  • Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141:122–131

    Article  Google Scholar 

  • Tsigos C, Chrousos GP (2002) Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53:865–871

    Article  Google Scholar 

  • Tsuji H, Larson MG, Venditti FJ, Manders ES, Evans JC, Feldman CL, Levy D (1996) Impact of reduced heart rate variability on risk for cardiac events: the Framingham Heart Study. Circulation 94:2850–2855

    Article  CAS  Google Scholar 

  • Turek FW (2008) Staying off the dance floor: when no rhythm is better than bad rhythm. Am J Physiol Regul Integr Comp Physiol 294:R1672–R1674

    Article  CAS  Google Scholar 

  • Vandewalle G, Middleton B, Rajaratnam SMW, Stone BM, Thorleifsdottir B, Arendt J, Dijk D-J (2007) Robust circadian rhythm in heart rate and its variability: influence of exogenous melatonin and photoperiod. J Sleep Res 16:148–155

    Article  Google Scholar 

  • Vangelova KK, Dalbokova DL (1998) Variations in 6-sulphatoxymelatonin excretion and oral temperature under a 12-h shiftwork environment. Rev Environ Health 13:221–226

    Article  CAS  Google Scholar 

  • Vrijkotte TG, van Doornen LJ, de Geus EJ (2000) Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension 35:880–886

    Article  CAS  Google Scholar 

  • Wong IS, Ostry AS, Demers PA, Davies HW (2012) Job strain and shift work influences on biomarkers and subclinical heart disease indicators: a pilot study. J Occup Environ Hyg 9:467–477

    Article  Google Scholar 

  • Zelinski EL, Deibel SH, McDonald RJ (2014) The trouble with circadian clock dysfunction: multiple deleterious effects on the brain and body. Neurosci Biobehav Rev 40:80–101

    Article  Google Scholar 

Download references

Acknowledgments

Elizabeth Bengtsen is acknowledged for her help in constructing the search strategy. The study was funded by The Danish Working Environment Research Fund (10-2011-09) and a Ph.D. scholarship from the University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Aarrebo Jensen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, M.A., Garde, A.H., Kristiansen, J. et al. The effect of the number of consecutive night shifts on diurnal rhythms in cortisol, melatonin and heart rate variability (HRV): a systematic review of field studies. Int Arch Occup Environ Health 89, 531–545 (2016). https://doi.org/10.1007/s00420-015-1093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-015-1093-3

Keywords

Navigation