Abstract
Purpose
Although exposure to polycyclic aromatic hydrocarbons (PAHs) is common in both environmental and occupational settings, few studies have compared PAH exposure among people with different professions. The purpose of this study was to investigate the variations in recent PAH exposure among different occupational groups over time using national representative samples.
Method
The study population consisted of 4162 participants from the 2001 to 2008 National Health and Nutrition Examination Survey, who had both urinary PAH metabolites and occupational information. Four corresponding monohydroxy-PAH urine metabolites: naphthalene (NAP), fluorene (FLUO), phenanthrene (PHEN), and pyrene (PYR) among seven broad occupational groups were analyzed using weighted linear regression models, adjusting for creatinine levels, sociodemographic factors, smoking status, and sampling season.
Results
The overall geometric mean concentrations of NAP, FLUO, PHEN, and PYR were 6927, 477, 335, and 87 ng/L, respectively. All four PAH metabolites were elevated in the “extractive, construction, and repair (ECR)” group, with 21–42 % higher concentrations than those in the reference group of “management.” Similar trends were seen in the “operators, fabricators, and laborers (OFL)” group for FLUO, PHEN, and PYR. In addition, both “service” and “support” groups had elevated FLUO. Significant (p < 0.001) upward temporal trends were seen in NAP and PYR, with an approximately 6–17 % annual increase, and FLUO and PHEN remained relatively stable. Race and socioeconomic status show independent effects on PAH exposure.
Conclusions
Heterogeneous distributions of urinary PAH metabolites among people with different job categories exist at the population level. The upward temporal trends in NAP and PYR warrant reduction in PAH exposure, especially among those with OFL and ECR occupations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alomirah H, Al-Zenki S, Al-Hooti S, Zaghloul S, Sawaya W, Ahmed N, Kannan K (2011) Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 22(12):2028–2035. doi:10.1016/j.foodcont.2011.05.024
ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta, Georgia: US department of health and human services, agency for toxic substances and disease registry
Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L et al (2009) Special report: policy a review of human carcinogens-Part F: chemical agents and related occupations. Lancet Oncol 10(12):1143–1144
Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113(2):192–200
Bell ML, Ebisu K (2012) Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect 120(12):1699–1704. doi:10.1289/ehp.1205201
Bernert JT Jr, Turner WE, Pirkle JL, Sosnoff CS, Akins JR, Waldrep MK, Ann Q et al (1997) Development and validation of sensitive method for determination of serum cotinine in smokers and nonsmokers by liquid chromatography/atmospheric pressure ionization tandem mass spectrometry. Clin Chem 43(12):2281–2291
Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8(3):444–472. doi:10.1023/a:1018465507029
Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A et al (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(Suppl 3):451–488
Campo L, Fustinoni S, Consonni D, Pavanello S, Kapka L, Siwinska E, Mielzynska D et al (2014) Urinary carcinogenic 4-6 ring polycyclic aromatic hydrocarbons in coke oven workers and in subjects belonging to the general population: role of occupational and environmental exposure. Int J Hyg Environ Health 217(2–3):231–238. doi:10.1016/j.ijheh.2013.06.005
Clark JD 3rd, Serdar B, Lee DJ, Arheart K, Wilkinson JD, Fleming LE (2012) Exposure to polycyclic aromatic hydrocarbons and serum inflammatory markers of cardiovascular disease. Environ Res 117:132–137. doi:10.1016/j.envres.2012.04.012
Dor F, Dab W, Empereur-Bissonnet P, Zmirou D (1999) Validity of biomarkers in environmental health studies: the case of PAHs and benzene. Crit Rev Toxicol 29(2):129–168. doi:10.1080/10408449991349195
Hajat A, Diez-Roux AV, Adar SD, Auchincloss AH, Lovasi GS, O’Neill MS, Sheppard L et al (2013) Air pollution and individual and neighborhood socioeconomic status: evidence from the multi-ethnic study of atherosclerosis (MESA). Environ Health Perspect 121(11–12):1325–1333. doi:10.1289/ehp.1206337
Han IK, Duan X, Zhang L, Yang H, Rhoads GG, Wei F, Zhang J (2008) 1-Hydroxypyrene concentrations in first morning voids and 24-h composite urine: intra- and inter-individual comparisons. J Expo Sci Environ Epidemiol 18(5):477–485. doi:10.1038/sj.jes.7500639
Hansen AM, Raaschou-Nielsen O, Knudsen LE (2005) Urinary 1-hydroxypyrene in children living in city and rural residences in Denmark. Sci Total Environ 347(1–3):98–105. doi:10.1016/j.scitotenv.2004.12.037
Hansen AM, Mathiesen L, Pedersen M, Knudsen LE (2008) Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies–a review. Int J Hyg Environ Health 211(5–6):471–503. doi:10.1016/j.ijheh.2007.09.012
Ikeda M, Ezaki T, Tsukahara T, Moriguchi J, Furuki K, Fukui Y, Okamoto S et al (2003) Bias induced by the use of creatinine-corrected values in evaluation of beta(2)-microglobulin levels. Toxicol Lett 145(2):197–207. doi:10.1016/S0378-4274(03)00320-5
Jacob J, Seidel A (2002) Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 778(1–2):31–47. doi:10.1016/S0378-4347(01)00467-4
Jia C, James W, Kedia S (2014) Relationship of racial composition and cancer risks from air toxics exposure in Memphis, Tennessee, USA. Int J Environ Res Public Health 11(8):7713–7724. doi:10.3390/ijerph110807713
Jung KH, Patel MM, Moors K, Kinney PL, Chillrud SN, Whyatt R, Hoepner L et al (2010) Effects of Heating season on residential indoor and outdoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in an Urban Birth Cohort. Atmos Environ (1994) 44(36):4545–4552. doi:10.1016/j.atmosenv.2010.08.024
Jung KH, Hsu S-I, Yan B, Moors K, Chillrud SN, Ross J, Wang S et al (2012) Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort. Environ Int 45:44–50
Jung KH, Liu B, Lovinsky-Desir S, Yan B, Camann D, Sjodin A, Li Z et al (2014a) Time trends of polycyclic aromatic hydrocarbon exposure in New York City from 2001 to 2012: assessed by repeat air and urine samples. Environ Res 131:95–103. doi:10.1016/j.envres.2014.02.017
Jung KH, Perzanowski M, Rundle A, Moors K, Yan B, Chillrud SN, Whyatt R et al (2014b) Polycyclic aromatic hydrocarbon exposure, obesity and childhood asthma in an urban cohort. Environ Res 128:35–41. doi:10.1016/j.envres.2013.12.002
Kim JY, Hecht SS, Mukherjee S, Carmella SG, Rodrigues EG, Christiani DC (2005) A urinary metabolite of phenanthrene as a biomarker of polycyclic aromatic hydrocarbon metabolic activation in workers exposed to residual oil fly ash. Cancer Epidemiol Biomarkers Prev 14(3):687–692. doi:10.1158/1055-9965.Epi-04-0428
Kim K-H, Jahan SA, Kabir E, Brown RJC (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80. doi:10.1016/j.envint.2013.07.019
Langlois PH, Hoyt AT, Lupo PJ, Lawson CC, Waters MA, Desrosiers TA, Shaw GM et al (2012) Maternal occupational exposure to polycyclic aromatic hydrocarbons and risk of neural tube defect-affected pregnancies. Birth Defects Res Part A-Clin Mol Teratol 94(9):693–700. doi:10.1002/bdra.23045
Levine H, Berman T, Goldsmith R, Goen T, Spungen J, Novack L, Amitai Y et al (2015) Urinary concentrations of polycyclic aromatic hydrocarbons in Israeli adults: demographic and life-style predictors. Int J Hyg Environ Health 218(1):123–131. doi:10.1016/j.ijheh.2014.09.004
Li Z, Sandau CD, Romanoff LC, Caudill SP, Sjodin A, Needham LL, Patterson DG (2008) Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environ Res 107(3):320–331. doi:10.1016/j.envres.2008.01.013
Li Z, Romanoff L, Bartell S, Pittman EN, Trinidad DA, McClean M, Webster TF et al (2012) Excretion profiles and half-lives of ten urinary polycyclic aromatic hydrocarbon metabolites after dietary exposure. Chem Res Toxicol 25(7):1452–1461. doi:10.1021/tx300108e
Lu H, Zhu L (2007) Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. J Hazard Mater 139(2):193–198. doi:10.1016/j.jhazmat.2006.06.011
McClean MD, Rinehart RD, Ngo L, Eisen EA, Kelsey KT, Wiencke JK, Herrick RF (2004) Urinary 1-hydroxypyrene and polycyclic aromatic hydrocarbon exposure among asphalt paving workers. Ann Occup Hyg 48(6):565–578. doi:10.1093/annhyg/meh044
Miller RL, Garfinkel R, Horton M, Camann D, Perera FP, Whyatt RM, Kinney PL (2004) Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest 126(4):1071–1078. doi:10.1378/chest.126.4.1071
Morello-Frosch R, Jesdale BM (2006) Separate and unequal: residential segregation and estimated cancer risks associated with ambient air toxics in US metropolitan areas. Environ Health Perspect 114(3):386–393. doi:10.1289/ehp.8500
Naumova YY, Eisenreich SJ, Turpin BJ, Weisel CP, Morandi MT, Colome SD, Totten LA et al (2002) Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the US. Environ Sci Technol 36(12):2552–2559. doi:10.1021/Es015727h
NCHS (2006) Analytic and Reporting Guidelines. The National Health and Nutrition Examination Survey (NHANES). National Center for Health Statistics. http://www.cdcgov/nchs/data/nhanes/nhanes_03_04/nhanes_analytic_guidelines_dec_2005pdf Assessed 20 Mar 2014
NCHS (2013) National Center for Health Statistics, Specifying Weighting Parameters. http://www.cdcgov/nchs/tutorials/nhanes/SurveyDesign/Weighting/introhtm Assessed 20 Mar 2014
Nethery E, Wheeler AJ, Fisher M, Sjodin A, Li Z, Romanoff LC, Foster W et al (2012) Urinary polycyclic aromatic hydrocarbons as a biomarker of exposure to PAHs in air: a pilot study among pregnant women. J Expo Sci Env Epid 22(1):70–81. doi:10.1038/Jes.2011.32
O’Neill MS, Jerrett M, Kawachi L, Levy JL, Cohen AJ, Gouveia N, Wilkinson P et al (2003) Health, wealth, and air pollution: advancing theory and methods. Environ Health Perspect 111(16):1861–1870. doi:10.1289/ehp.6334
Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D, Hoepner L et al (2006) Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 114(8):1287–1292
Perera FP, Wang S, Vishnevetsky J, Zhang B, Cole KJ, Tang D, Rauh V et al (2011) Polycyclic aromatic hydrocarbons-aromatic DNA adducts in cord blood and behavior scores in New York city children. Environ Health Perspect 119(8):1176–1181. doi:10.1289/ehp.1002705
Perera FP, Tang D, Wang S, Vishnevetsky J, Zhang B, Diaz D, Camann D et al (2012) Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ Health Perspect 120(6):921–926. doi:10.1289/ehp.1104315
Romanoff LC, Li Z, Young KJ, Blakely NC, Patterson DG, Sandau CD (2006) Automated solid-phase extraction method for measuring urinary polycyclic aromatic hydrocarbon metabolites in human biomonitoring using isotope-dilution gas chromatography high-resolution mass spectrometry. J Chromatogr B 835(1–2):47–54. doi:10.1016/j.jchromb.2006.03.004
Rosa MJ, Jung KH, Perzanowski MS, Kelvin EA, Darling KW, Camann DE, Chillrud SN et al (2011) Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke and asthma. Respir Med 105(6):869–876. doi:10.1016/j.rmed.2010.11.022
Rota M, Bosetti C, Boccia S, Boffetta P, La Vecchia C (2014) Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: an updated systematic review and a meta-analysis to 2014. Arch Toxicol 88(8):1479–1490. doi:10.1007/s00204-014-1296-5
Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D, Reyes M et al (2012) Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy. Am J Epidemiol 175(11):1163–1172. doi:10.1093/aje/kwr455
Scherer G, Frank S, Riedel K, Meger-Kossien I, Renner T (2000) Biomonitoring of exposure to polycyclic aromatic hydrocarbons of nonoccupationally exposed persons. Cancer Epidemiol Biomarkers Prev 9(4):373–380
Scinicariello F, Buser MC (2014) Urinary polycyclic aromatic hydrocarbons and childhood obesity: NHANES (2001–2006). Environ Health Perspect 122(3):299–303. doi:10.1289/ehp.1307234
Tuntawiroon J, Mahidol C, Navasumrit P, Autrup H, Ruchirawat M (2007) Increased health risk in Bangkok children exposed to polycyclic aromatic hydrocarbons from traffic-related sources. Carcinogenesis 28(4):816–822. doi:10.1093/carcin/bgl175
Unwin J, Cocker J, Scobbie E, Chambers H (2006) An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann Occup Hyg 50(4):395–403. doi:10.1093/annhyg/mel010
Us EPA (1999) Integrated Risk Information System (IRIS) on Polycyclic Organic Matter. US Environmental Protection Agency National Center for Environmental Assessment. Office of Research and Development, Washington, DC 1999
Van Rooij JG, Van Lieshout EM, Bodelier-Bade MM, Jongeneelen FJ (1993) Effect of the reduction of skin contamination on the internal dose of creosote workers exposed to polycyclic aromatic hydrocarbons. Scand J Work Environ Health 19(3):200–207
Wei B, Bernert JT, Blount B, Sosnoff C, Wang L (2014) Occupational exposure to second-hand tobacco smoke in the United States: NHANES 1999–2008. 24th Annual Meeting of The International Society of Exposure Science October 12–16 Cincinnati, Ohio (Abstract # Mo-S-C4-05)
Xu XH, Cook RL, Ilacqua VA, Kan HD, Talbott EO, Kearney G (2010) Studying associations between urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases in the United States. Sci Total Environ 408(21):4943–4948. doi:10.1016/j.scitotenv.2010.07.034
Zipf G, Chiappa M, Porter KS et al (2013) National health and nutrition examination survey: plan and operations, 1999–2010 National Center for Health Statistics Vital Health Stat 1(56):4–9
Acknowledgments
This work is partially supported by a JPB Environmental Health Fellowship award granted by the JPB Foundation and managed by the Harvard T.H. Chan School of Public Health. The authors thank the reviewers for their helpful comments and suggestions to improve this paper. The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Liu, B., Jia, C. Effects of profession on urinary PAH metabolite levels in the US population. Int Arch Occup Environ Health 89, 123–135 (2016). https://doi.org/10.1007/s00420-015-1057-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00420-015-1057-7