Effects of electromagnetic fields exposure on plasma hormonal and inflammatory pathway biomarkers in male workers of a power plant

  • Zhaopin Wang
  • Ying Fei
  • Hui Liu
  • Shuangshuang Zheng
  • Zheyuan Ding
  • Wen Jin
  • Yifeng Pan
  • Zexin Chen
  • Lijuan Wang
  • Guangdi Chen
  • Zhengping Xu
  • Yongjian Zhu
  • Yunxian Yu
Original Article

Abstract

Purpose

The potential health risks of electromagnetic fields (EMFs) have currently raised considerable public concerns. The aim of this study was to evaluate the effects of EMF exposure on levels of plasma hormonal and inflammatory pathway biomarkers in male workers of an electric power plant.

Methods

Seventy-seven male workers with high occupational EMF exposure and 77 male controls with low exposure, matched by age, were selected from a cross-sectional study. Moreover, high EMF exposure group was with walkie-talkies usage and exposed to power frequency EMF at the work places for a longer duration than control group. A questionnaire was applied to obtain relevant information, including sociodemographic characteristics, lifestyle factors, and EMF exposures. Plasma levels of testosterone, estradiol, melatonin, NF-κB, heat–shock protein (HSP) 70, HSP27, and TET1 were determined by an enzyme-linked immunosorbent assay.

Results

EMF exposure group had statistically significantly lower levels of testosterone (β = −0.3 nmol/L, P = 0.015), testosterone/estradiol (T/E2) ratio (β = −15.6, P = 0.037), and NF-κB (β = −20.8 ng/L, P = 0.045) than control group. Moreover, joint effects between occupational EMF exposure and employment duration, mobile phone fees, years of mobile phone usage, and electric fees on levels of testosterone and T/E2 ratio were observed. Nevertheless, no statistically significant associations of EMF exposures with plasma estradiol, melatonin, HSP70, HSP27, and TET1 were found.

Conclusions

The findings showed that chronic exposure to EMF could decrease male plasma testosterone and T/E2 ratio, and it might possibly affect reproductive functions in males. No significant associations of EMF exposure with inflammatory pathway biomarkers were found.

Keywords

Electromagnetic fields Testosterone/estradiol Melatonin Heat–shock protein NF-κB TET1 

Supplementary material

420_2015_1049_MOESM1_ESM.doc (243 kb)
Supplementary material 1 (DOC 243 kb)

References

  1. Al-Akhras MA, Darmani H, Elbetieha A (2006) Influence of 50 Hz magnetic field on sex hormones and other fertility parameters of adult male rats. Bioelectromagnetics 27(2):127–131. doi:10.1002/bem.20186 CrossRefGoogle Scholar
  2. Altpeter ES, Roosli M, Battaglia M, Pfluger D, Minder CE, Abelin T (2006) Effect of short-wave (6–22 MHz) magnetic fields on sleep quality and melatonin cycle in humans: the Schwarzenburg shut-down study. Bioelectromagnetics 27(2):142–150. doi:10.1002/bem.20183 CrossRefGoogle Scholar
  3. Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683. doi:10.1146/annurev.immunol.14.1.649 CrossRefGoogle Scholar
  4. Bonde JP (1990) Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study. Br J Ind Med 47(8):508–514Google Scholar
  5. Calvente I, Fernandez M, Villalba J, Olea N, Nuñez M (2010) Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review. Sci Total Environ 408(16):3062–3069CrossRefGoogle Scholar
  6. Carpenter DO (2013) Human disease resulting from exposure to electromagnetic fields. Rev Environ Health 28(4):159–172. doi:10.1515/reveh-2013-0016 CrossRefGoogle Scholar
  7. Claustrat B, Chazot G, Brun J, Jordan D, Sassolas G (1984) A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression. Biol Psychiatry 19(8):1215–1228Google Scholar
  8. de Pomerai D, Daniells C, David H, Allan J, Duce I, Mutwakil M, Thomas D, Sewell P, Tattersall J, Jones D (2000) Cell biology: non-thermal heat-shock response to microwaves. Nature 405:417–418CrossRefGoogle Scholar
  9. De Rosa M, Zarrilli S, Di Sarno A, Milano N, Gaccione M, Boggia B, Lombardi G, Colao A (2003) Hyperprolactinemia in men: clinical and biochemical features and response to treatment. Endocrine 20(1–2):75–82. doi:10.1385/ENDO:20:1-2:75 CrossRefGoogle Scholar
  10. Ding GR, Yaguchi H, Yoshida M, Miyakoshi J (2000) Increase in X-ray-induced mutations by exposure to magnetic field (60 Hz, 5 mT) in NF-kappaB-inhibited cells. Biochem Biophys Res Commun 276(1):238–243. doi:10.1006/bbrc.2000.3455 CrossRefGoogle Scholar
  11. Djeridane Y, Touitou Y, de Seze R (2008) Influence of electromagnetic fields emitted by GSM-900 cellular telephones on the circadian patterns of gonadal, adrenal and pituitary hormones in men. Radiat Res 169(3):337–343. doi:10.1667/RR0922.1 CrossRefGoogle Scholar
  12. Duan W, Liu C, Wu H, Chen C, Zhang T, Gao P, Luo X, Yu Z, Zhou Z (2014) Effects of exposure to extremely low frequency magnetic fields on spermatogenesis in adult rats. Bioelectromagnetics 35(1):58–69. doi:10.1002/bem.21816 CrossRefGoogle Scholar
  13. Forgács Z, Somosy Z, Kubinyi G, Bakos J, Hudák A, Surján A, Thuróczy G (2006) Effect of whole-body 1800 MHz GSM-like microwave exposure on testicular steroidogenesis and histology in mice. Reprod Toxicol 22(1):111–117CrossRefGoogle Scholar
  14. Frei P, Mohler E, Neubauer G, Theis G, Burgi A, Frohlich J, Braun-Fahrlander C, Bolte J, Egger M, Roosli M (2009) Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environ Res 109(6):779–785. doi:10.1016/j.envres.2009.04.015 CrossRefGoogle Scholar
  15. Gamberale F, Olson BA, Eneroth P, Lindh T, Wennberg A (1989) Acute effects of ELF electromagnetic fields: a field study of linesmen working with 400 kV power lines. Br J Ind Med 46(10):729–737Google Scholar
  16. Genuis SJ (2008) Fielding a current idea: exploring the public health impact of electromagnetic radiation. Public Health 122(2):113–124CrossRefGoogle Scholar
  17. Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62(2):104–109. doi:10.1016/j.biopha.2007.12.004 CrossRefGoogle Scholar
  18. Hardell L, Soderqvist F, Carlberg M, Zetterberg H, Mild KH (2010) Exposure to wireless phone emissions and serum beta-trace protein. Int J Mol Med 26(2):301–306CrossRefGoogle Scholar
  19. Henshaw DL, Reiter RJ (2005) Do magnetic fields cause increased risk of childhood leukemia via melatonin disruption? Bioelectromagnetics 26(S7):S86–S97CrossRefGoogle Scholar
  20. Hjollund N, Skotte JH, Kolstad HA, Bonde J (1999) Extremely low frequency magnetic fields and fertility: a follow up study of couples planning first pregnancies. The Danish first pregnancy planner study team. Occup Environ Med 56(4):253–255CrossRefGoogle Scholar
  21. Hjollund NH, Bonde JP, Jensen TK, Ernst E, Henriksen TB, Kolstad HA, Giwercman A, Skakkebaek NE, Olsen J (1998) Semen quality and sex hormones with reference to metal welding. Reprod Toxicol 12(2):91–95CrossRefGoogle Scholar
  22. Holdcraft RW, Braun RE (2004) Hormonal regulation of spermatogenesis. Int J Androl 27(6):335–342. doi:10.1111/j.1365-2605.2004.00502.x CrossRefGoogle Scholar
  23. Holian O, Astumian RD, Lee R, Reyes H, Attar B, Walter R (1996) Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields. Bioelectromagnetics 17(6):504–509CrossRefGoogle Scholar
  24. IARC (2002) Non-ionizing radiation, Part I: static and extremely low-frequency (ELF) electric and magnetic fields. IARC Monogr Eval Carcinog Risks Hum 80:331–338Google Scholar
  25. IARC (2011) Non-ionizing radiation, Part II: Radiofrequency electromagnetic fields. IARC Monogr Eval Carcinog Risks Hum 102:407–419Google Scholar
  26. Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner E, Mueller-Dieckmann C, Farahifar D, Rossi B, Auberger P, Baeuerle PA (1996) Tyrosine phosphorylation of IκB-α activates NF-κB without proteolytic degradation of IκB-α. Cell 86(5):787–798CrossRefGoogle Scholar
  27. Kesari KK, Behari J (2012) Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: role of ROS. Electromagn Biol Med 31(3):213–222. doi:10.3109/15368378.2012.700292 CrossRefGoogle Scholar
  28. Kheifets L, Monroe J, Vergara X, Mezei G, Afifi AA (2008) Occupational electromagnetic fields and leukemia and brain cancer: an update to two meta-analyses. J Occup Environ Med 50(6):677–688CrossRefGoogle Scholar
  29. Lee HJ, Jin YB, Kim TH, Pack JK, Kim N, Choi HD, Lee JS, Lee YS (2012) The effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on rat testicular function. Bioelectromagnetics 33(4):356–364. doi:10.1002/bem.20715 CrossRefGoogle Scholar
  30. Lim HB, Cook GG, Barker AT, Coulton LA (2005) Effect of 900 MHz electromagnetic fields on nonthermal induction of heat-shock proteins in human leukocytes. Radiat Res 163(1):45–52CrossRefGoogle Scholar
  31. Luboshitzky R, Kaplan-Zverling M, Shen-Orr Z, Nave R, Herer P (2002a) Seminal plasma androgen/oestrogen balance in infertile men. Int J Androl 25(6):345–351CrossRefGoogle Scholar
  32. Luboshitzky R, Shen-Orr Z, Herer P (2002b) Seminal plasma melatonin and gonadal steroids concentrations in normal men. Arch Androl 48(3):225–232. doi:10.1080/01485010252869324 CrossRefGoogle Scholar
  33. Møllerløkken OJ, Moen BE, Baste V, Magerøy N, Oftedal G, Neto E, Ersland L, Bjørge L, Torjesen PA, Mild KH (2012) No effects of MRI scan on male reproduction hormones. Reprod Toxicol 34(1):133–139CrossRefGoogle Scholar
  34. Meo SA, Al-Drees AM, Husain S, Khan MM, Imran MB (2010) Effects of mobile phone radiation on serum testosterone in Wistar albino rats. Saudi Med J 31(8):869–873Google Scholar
  35. Miyakoshi J, Takemasa K, Takashima Y, Ding GR, Hirose H, Koyama S (2005) Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromagnetics 26(4):251–257CrossRefGoogle Scholar
  36. Neves-Costa A, Moita LF (2013) TET1 is a negative transcriptional regulator of IL-1β in the THP-1 cell line. Mol Immunol 54(3):264–270CrossRefGoogle Scholar
  37. Ozguner M, Koyu A, Cesur G, Ural M, Ozguner F, Gokcimen A, Delibas N (2005) Biological and morphological effects on the reproductive organ of rats after exposure to electromagnetic field. Saudi Med J 26(3):405–410Google Scholar
  38. Ozlem Nisbet H, Nisbet C, Akar A, Cevik M, Karayigit MO (2012) Effects of exposure to electromagnetic field (1.8/0.9 GHz) on testicular function and structure in growing rats. Research in veterinary science 93(2):1001-1005 doi:10.1016/j.rvsc.2011.10.023
  39. Ross CL, Harrison BS (2013) Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages. J Inflamm Res 6:45–51CrossRefGoogle Scholar
  40. Söderqvist F, Carlberg M, Zetterberg H, Hardell L (2012) Use of wireless phones and serum β-trace protein in randomly recruited persons aged 18–65 years: a cross-sectional study. Electromagn Biol Med 31(4):416–424CrossRefGoogle Scholar
  41. Schell MT, Spitzer AL, Johnson JA, Lee D, Harris HW (2005) Heat shock inhibits NF-kB activation in a dose-and time-dependent manner. J Surg Res 129(1):90–93CrossRefGoogle Scholar
  42. Sepehrimanesh M, Saeb M, Nazifi S, Kazemipour N, Jelodar G, Saeb S (2014) Impact of 900 MHz electromagnetic field exposure on main male reproductive hormone levels: a Rattus norvegicus model. Int J Biometeorol 58(7):1657–1663. doi:10.1007/s00484-013-0771-7 CrossRefGoogle Scholar
  43. Shahin S, Mishra V, Singh SP, Chaturvedi CM (2014) 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress. Free Radical Res 48(5):511–525. doi:10.3109/10715762.2014.888717 CrossRefGoogle Scholar
  44. Tenorio BM, Jimenez GC, de Morais RN, Peixoto CA, de Albuquerque Nogueira R, da Silva Jr VA (2012) Evaluation of testicular degeneration induced by low-frequency electromagnetic fields. J Appl Toxicol JAT 32(3):210–218. doi:10.1002/jat.1680 CrossRefGoogle Scholar
  45. Tian F, Nakahara T, Wake K, Taki M, Miyakoshi J (2002) Exposure to 2.45 GHz electromagnetic fields induces hsp70 at a high SAR of more than 20 W/kg but not at 5 W/kg in human glioma MO54 cells. Int J Radiat Biol 78(5):433–440CrossRefGoogle Scholar
  46. Touitou Y, Selmaoui B (2012) The effects of extremely low-frequency magnetic fields on melatonin and cortisol, two marker rhythms of the circadian system. Dialog Clin Neurosci 14(4):381Google Scholar
  47. Uckun FM, Kurosaki T, Jin J, Jun X, Morgan A, Takata M, Bolen J, Luben R (1995) Exposure of B-lineage lymphoid cells to low energy electromagnetic fields stimulates Lyn kinase. J Biol Chem 270(46):27666–27670CrossRefGoogle Scholar
  48. Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R (2008) Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol 158(6):1189–1196CrossRefGoogle Scholar
  49. Wang J, Koyama S, Komatsubara Y, Suzuki Y, Taki M, Miyakoshi J (2006) Effects of a 2450 MHz high-frequency electromagnetic field with a wide range of SARs on the induction of heat-shock proteins in A172 cells. Bioelectromagnetics 27(6):479–486CrossRefGoogle Scholar
  50. Yang X-S, He G-L, Hao Y-T, Xiao Y, Chen C-H, Zhang G-B, Yu Z-P (2012) Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull 88(4):371–378CrossRefGoogle Scholar
  51. Zhang Q, Bai Q, Yuan Y, Liu P, Qiao J (2010) Assessment of seminal estradiol and testosterone levels as predictors of human spermatogenesis. J Androl 31(2):215–220CrossRefGoogle Scholar
  52. Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2008) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28(1):53–63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhaopin Wang
    • 1
    • 3
  • Ying Fei
    • 1
    • 3
  • Hui Liu
    • 1
    • 3
  • Shuangshuang Zheng
    • 1
    • 3
  • Zheyuan Ding
    • 1
    • 3
  • Wen Jin
    • 1
    • 3
  • Yifeng Pan
    • 1
    • 3
  • Zexin Chen
    • 1
    • 3
  • Lijuan Wang
    • 1
    • 3
  • Guangdi Chen
    • 2
  • Zhengping Xu
    • 2
  • Yongjian Zhu
    • 4
  • Yunxian Yu
    • 1
    • 3
  1. 1.Department of Epidemiology and Health Statistics, School of Public Health, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Bioelectromagnetics Laboratory, School of MedicineZhejiang UniversityHangzhouChina
  3. 3.Chronic Disease Research Institute, School of Public Health, School of MedicineZhejiang UniversityHangzhouChina
  4. 4.Department of NeurosurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina

Personalised recommendations