Advertisement

Exposure to heavy metals due to pesticide use by vineyard farmers

  • Gustavo Henrique Oliveira Rocha
  • Renata Sano Lini
  • Fernando BarbosaJr.
  • Bruno Lemos Batista
  • Vanessa Cristina de Oliveira Souza
  • Samuel Botião Nerilo
  • Erika Bando
  • Simone Aparecida Galerani Mossini
  • Paula NishiyamaEmail author
Original Article

Abstract

Objectives

To statistically analyze serum heavy metal levels in biological samples obtained from vineyard workers from southern Brazil and check for heavy metal exposure due to pesticide use.

Methods

Serum samples were obtained from 54 farmers and 108 healthy unexposed individuals. Samples from the same farmers were obtained at three different time points over a 1-year period. Levels of lead, arsenic, nickel, zinc, manganese and copper were determined for each sample using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). All results were statistically analyzed using the nonparametric Kruskal–Wallis test (followed by Dunn’s post hoc test).

Results

Results showed that serum heavy metal levels in farmers were twofold to fourfold higher than in controls. This difference was found for all heavy metals tested and was significant (p < 0.05). Serum metal levels among the farmers also correlated with the frequency of use of pesticides at a specific time of year, which varied according to seasonal conditions influencing the need for pesticide application.

Conclusions

It can be concluded that in the vineyard region assessed, farmers were more susceptible to heavy metal exposure due to pesticide use.

Keywords

Viticulture Pesticides Heavy metals Occupational exposure 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Al Nasir FM, Jiries AG, Batarseh MI, Beese F (2001) Pesticides and trace metals residue in grape and home made wine in Jordan. Environ Monit Assess 66:253–263CrossRefGoogle Scholar
  2. Al-Saleh I, Al-Enazi S, Shinwari N (2009) Assessment of lead in cosmetic products. Regul Toxicol Pharmacol 54:105–113CrossRefGoogle Scholar
  3. Alves AF, Tonin JM, Carrer MJ (2013) Assimetria de transmissão de preço na comercialização da uva fina de mesa no Paraná: 1997 a 2011. Rev Econ Sociol Rural 51:479–498CrossRefGoogle Scholar
  4. Baharuddin MRB, Sahid IB, Noor MABM, Sulaiman N, Othman F (2011) Pesticide risk assessment: a study on inhalation and dermal exposure to 2, 4-D and paraquat among Malaysian paddy farmers. J Environ Sci Health Part B 46:600–607. doi: 10.1080/03601234.2011.589309 CrossRefGoogle Scholar
  5. Barbosa Jr F, Tanus-Santos JE, Gerlach RF, Parsons PJ (2005) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 1669–1674Google Scholar
  6. Batista BL, Rodrigues JL, Nunes JA, de Oliveira Souza VC, Barbosa F Jr (2009) Exploiting dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) for sequential determination of trace elements in blood using a dilute-and-shoot procedure. Anal Chim Acta 639:13–18. doi: 10.1016/j.aca.2009.03.016 CrossRefGoogle Scholar
  7. Bedor CNG, Ramos LO, Pereira PJ, Rêgo MAV, Pavão AC, Augusto LGDS (2009) Vulnerability and risk situations related to the use of pesticides in irrigated fruit farming. Rev Bras Epidemiol 12:39–49CrossRefGoogle Scholar
  8. Bloomfield J, Williams R, Gooddy D, Cape J, Guha P (2006) Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Sci Total Environ 369:163–177. doi: 10.1016/j.scitotenv.2006.05.019 CrossRefGoogle Scholar
  9. D’Ilio S, Violante N, Caimi S, Di Gregorio M, Petrucci F, Senofonte O (2006) Determination of trace elements in serum by dynamic reaction cell inductively coupled plasma mass spectrometry: developing of a method with a desolvating system nebulizer. Anal Chim Acta 573:432–438CrossRefGoogle Scholar
  10. Ehresman DJ, Froehlich JW, Olsen GW, Chang S-C, Butenhoff JL (2007) Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals. Environ Res 103:176–184CrossRefGoogle Scholar
  11. Goullé J-P et al (2005) Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: reference values. Forensic Sci Int 153:39–44CrossRefGoogle Scholar
  12. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. doi: 10.1093/bmb/ldg032 CrossRefGoogle Scholar
  13. Kuhn IA (2011) Análise Multi-elementar e Transferência de Metais e Isótopos de Chumbo no Sistema Planta–Solo-Água Subterrânea em Área Contaminada por Calda Bordalesa na Região Vinífera de Palomas, Município de Santana do Livramento, RS. UFRGS, Porto AlegreGoogle Scholar
  14. La Pera L, Dugo G, Rando R, Di Bella G, Maisano R, Salvo F (2008) Statistical study of the influence of fungicide treatments (mancozeb, zoxamide and copper oxychloride) on heavy metal concentrations in Sicilian red wine. Food Addit Contam 25:302–313CrossRefGoogle Scholar
  15. Leblanc J-C, Malmauret L, GuÉrin T, Bordet F, Boursier B, Verger P (2000) Estimation of the dietary intake of pesticide residues, lead, cadmium, arsenic and radionuclides in France. Food Addit Contam 17:925–932. doi: 10.1080/026520300750038108 CrossRefGoogle Scholar
  16. Loska K, Wiechuła D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165CrossRefGoogle Scholar
  17. Mello LMR (2013) Viticultura Brasileira: panorama 2012. EMBRAPAGoogle Scholar
  18. Mirlean N, Roisenberg A, Chies J (2005) Copper-based fungicide contamination and metal distribution in Brazilian grape products. Bull Environ Contam Toxicol 75:968–974. doi: 10.1007/s00128-005-0844-3 CrossRefGoogle Scholar
  19. Mirlean N, Roisenberg A, Chies JO (2007) Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environ Pollut 149:10–17. doi: 10.1016/j.envpol.2006.12.024 CrossRefGoogle Scholar
  20. Nischwitz V, Berthele A, Michalke B (2008) Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: an approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier. Anal Chim Acta 627:258–269CrossRefGoogle Scholar
  21. Nunes JA, Batista BL, Rodrigues JL, Caldas NM, Neto JA, Barbosa F Jr (2010) A simple method based on ICP-MS for estimation of background levels of arsenic, cadmium, copper, manganese, nickel, lead, and selenium in blood of the Brazilian population. J Toxicol Environ Health Part A 73:878–887CrossRefGoogle Scholar
  22. Nuyttens D, Braekman P, Windey S, Sonck B (2009) Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Manag Sci 65:781–790. doi: 10.1002/ps.1755 CrossRefGoogle Scholar
  23. Orescanin V, Katunar A, Kutle A, Valkovic V (2003) Heavy metals in soil, grape, and wine. J Trace Microprobe Tech 21:171–180. doi: 10.1081/TMA-120017912 CrossRefGoogle Scholar
  24. Peryea F, Creger T (1994) Vertical distribution of lead and arsenic in soils contaminated with lead arsenate pesticide residues. Water Air Soil Pollut 78:297–306CrossRefGoogle Scholar
  25. Quandt SA et al (2010) Heavy metals exposures among Mexican farmworkers in eastern North Carolina. Environ Res 110:83–88CrossRefGoogle Scholar
  26. Thompson T, Freestone D, Michalczyk AA, Ackland ML (2012) Copper Levels in buccal cells of vineyard workers engaged in various activities. Ann Occup Hyg 56:305–314CrossRefGoogle Scholar
  27. Zuskin E, Mustajbegovic J, Schachter EN, Kern J, Pavicic D (1997) Respiratory function in vineyard and orchard workers. Am J Ind Med 31:250–255CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gustavo Henrique Oliveira Rocha
    • 1
  • Renata Sano Lini
    • 1
  • Fernando BarbosaJr.
    • 2
  • Bruno Lemos Batista
    • 2
    • 3
  • Vanessa Cristina de Oliveira Souza
    • 2
  • Samuel Botião Nerilo
    • 1
  • Erika Bando
    • 1
  • Simone Aparecida Galerani Mossini
    • 1
  • Paula Nishiyama
    • 1
    Email author
  1. 1.Laboratório de Toxicologia, Departamento de Ciências Básicas da SaúdeUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Laboratório de Toxicologia e Essencialidade de Metais, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USPRibeirão PretoBrazil
  3. 3.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréBrazil

Personalised recommendations