Saliva as a matrix for human biomonitoring in occupational and environmental medicine

Abstract

Purpose

Human biomonitoring (HBM) implies the assessment of internal exposure to hazardous substances by measuring the substances, their metabolites or reaction products, as well as effect parameters in human body fluids. Along with blood, plasma and urine, saliva is of increasing interest as an alternative matrix for HBM.

Methods

This paper reviews studies that measure salivary background levels of hazardous substances, elevated levels after environmental or occupational exposure, as well as references which deal with physiological and toxicokinetic behaviour of saliva and salivary parameters, respectively.

Results

The studies revealed that the determination of biomarkers in saliva is a promising approach for HBM, even if only few substances showed a satisfying correlation with exposure data or established biomonitoring matrices such as blood, plasma and urine. Saliva has been proven to be particularly suitable for substances of low molecular weight such as organic solvents, selected pesticides, cotinine, and for some specific trace elements. Besides several advantages, serious problems and limitations were identified. Above all, the complex interactions between substance properties, sampling procedure, sample preparation, measurement techniques or individual factors, and the salivary analyte level are discussed.

Conclusions

A major conclusion of the review is that more scientific studies are needed in order to systematically collect data on parameters, influencing salivary analyte levels. Crucially required is a harmonisation of the sampling as well as the sample preparation techniques and procedures, which is indispensable to achieve an overall comparability and interpretability of salivary biomarker levels.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdollahi M, Mostafalou S, Pournourmohammadi S, Shadnia S (2004) Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to Malathion. Comp Biochem Physiol C: Toxicol Pharmacol 137:29–34

    Google Scholar 

  2. Abdollahi M, Balali-Mood M, Akhgari M, Jannat B, Kebriaeezadeh A, Nikfar S (1996) A Survey of cholinesterase activity in healthy and organophosphate exposed populations. Iran J Med Sci 21:63–68

    Google Scholar 

  3. Ağaoğlu G, Arun T, Izgi B, Yarat A (2001) Nickel and chromium levels in the saliva and serum of patients with fixed orthodontic appliances. Angle Orthod 71:375–379

    Google Scholar 

  4. Amini F, Jafari A, Amini P, Sepasi S (2012) Metal ion release from fixed orthodontic appliances—an in vivo study. Eur J Orthod 34:126–130

    Google Scholar 

  5. Aps JK, Martens LC (2005) Review: The physiology of saliva and transfer of drugs into saliva. Forensic Sci Int 150:119–131

    CAS  Google Scholar 

  6. Atkinson JC, Dawes C, Ericson T, Fox PC, Gandara BK, Malamud D, Mandel ID, Navazesh M, Tabak LA (1993) Guidelines for saliva nomenclature and collection. Ann NY Acad Sci 694:xi–xii

    Google Scholar 

  7. Aufrich C, Tenner W, Salzer HR, Khoss AE, Wurst E, Herkner K (1992) Salivary IgA concentration is influenced by the saliva collection method. Eur J Clin Chem Clin Biochem 30:81–83

    Google Scholar 

  8. Australian Standards, AS 4760 (2006) Procedures for specimen collection and the detection and quantitation of drugs in oral fluid

  9. Ayinampudi BK, Narsimhan MJ (2012) Salivary copper and zinc levels in oral pre-malignant and malignant lesions. Oral Maxillofac Pathol 16:178–182

    Google Scholar 

  10. Bales CW, Freeland-Graves JH, Askey S, Behmardi F, Pobocik RS, Fickel JJ, Greenlee P (1990) Zinc, magnesium, copper, and protein concentrations in human saliva: age- and sex-related differences. Am J Clin Nutr 51:462–469

    CAS  Google Scholar 

  11. Barbosa F Jr, Tanus-Santos JE, Gerlach RF, Parsons PJ (2005) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspec 113:1669–1674

    CAS  Google Scholar 

  12. Baričević M, Mravak-Stipetić M, Stanimirović A, Blanuša M, Kern J, Lončar B, Andabak A, Baričević D (2011) Salivary concentrations of nickel and chromium in patients with burning mouth syndrome. Acta Dermatovenerol Croat 19:2–5

    Google Scholar 

  13. Beltzer EK, Fortunato CK, Guaderrama MM, Peckins MK, Garramone BM, Granger DA (2010) Salivary flow and alpha-amylase collection technique, duration, and oral fluid type. Physiol Behav 101:289–296

    CAS  Google Scholar 

  14. Benowitz NL (1996) Cotinine as a biomarker of environmental tobacco smoke exposure. Epidem Rev 18:188–204

    CAS  Google Scholar 

  15. Benowitz NL, Kuyt F, Jacob P, Jones RT, Osman AL (1983) Cotinine disposition and effects. Clin Pharm Therap 34:604–611

    CAS  Google Scholar 

  16. Bentley MC, Abrar M, Kelk M, Cook M, Cook J, Phillips K (1999) Validation of an assay for the determination of cotinine and 3-hydroxycotinine in human saliva using automated solid-phase extraction and liquid chromatography with tandem mass spectrometric detection. J Chromatogr B 723:185–194

    CAS  Google Scholar 

  17. Bernert JT Jr, McGuffey JE, Morrison MA, Pirkle JL (2000) Comparison of serum and salivary cotinine measurements by a sensitive high-performance liquid chromatography-tandem mass spectrometry method as an indicator of exposure to tobacco smoke among smokers and non-smokers. J Anal Toxicol 24:333–339

    CAS  Google Scholar 

  18. Bhowmick S, Halder D, Kundu AK, Saha D, Iglesias M, Nriagu J, Guhamazumder DN, Roman-Ross G, Chatterjee D (2013) Is saliva a potential biomarker of arsenic exposure? A case-control study in West Bengal, India. Environ Sci Technol 47:3326–3332

    CAS  Google Scholar 

  19. Björkman L, Sandborgh-Englund G, Ekstrand J (1997) Mercury in saliva and feces after removal of amalgam fillings. Toxicol Appl Pharmacol 144:156–162

    Google Scholar 

  20. Borella P, Fantuzzi G, Aggazzotti G (1994) Trace elements in saliva and dental caries in young adults. Sci Total Environ 153:219–224

    CAS  Google Scholar 

  21. Boros I, Keszler P, Zelles T (1999) Study of saliva secretion and the salivary fluoride concentration of the human minor labial glands by a new method. Arch Oral Biol 44:S59–S62

    CAS  Google Scholar 

  22. Brodeur J, Lacasse Y, Talbot D (1983) Influence of removal from occupational lead exposure on blood and saliva lead concentrations. Toxicol Lett 19:195–199

    CAS  Google Scholar 

  23. Bulgaroni V, Rovedatti MG, Sabino G, Magnarelli G (2012) Organophosphate pesticide environmental exposure analysis of salivary cholinesterase and carboxilesterase activities in preschool children and their mothers. Environ Monit Assess 184:3307–3314

    CAS  Google Scholar 

  24. Burguera-Pascu M, Rodríguez-Archilla A, Burguera JL, Burguera M, Rondón C, Carrero P (2007) Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection. Anal Chim Acta 600:214–220

    CAS  Google Scholar 

  25. Burguera P, Sanchez de Briceno A, Rondon CE, Burguera JL, Burguera M, Carrero P (1998) Determination of Nickel in Saliva by electrothermal atomic absorption spectrometry using various chemical modifiers with zeeman-effect background correction. Trace Elem Med Biol 12:115–120

    CAS  Google Scholar 

  26. Camara C, Czegeny ZS, Chicharro JL, Fernadez P, Guitierrez A (2001) Homogeneity and stability studies on sodium, calcium, magnesium and manganese in human saliva. Biol Trace Elem Res 79:131–137

    Google Scholar 

  27. Caporossi L, Santoro A, Papaleo B (2010) Saliva as an analytical matrix: state of the art and application for biomonitoring. Biomarkers 15:475–487

    CAS  Google Scholar 

  28. Carlson AJ, Crittenden AL (1910) The relation of ptyalin concentration to the diet and to the rate of secretion in saliva. Am J Physiol 26:169–177

    Google Scholar 

  29. Castagnola M, Picciotti PM, Messana I, Fanali C, Fiorita A, Cabras T, Calò L, Pisano E, Passali GC, Iavarone F, Paludetti G, Scarano E (2011) Potential applications of human saliva as diagnostic fluid. Acta Otorhinolaryngol Ital 31:347–357

    CAS  Google Scholar 

  30. Chaari N, Kerkeni A, Saadeddine S, Neffati F, Khalfallah T, Akrout M (2009) Mercury impregnation in dentists and dental assistants in Monastir city, Tunisia. Rev Stomatol Chir Maxillofac 110:139–144

    CAS  Google Scholar 

  31. Chicharro JL, Serrano V, Ureña R, Gutierrez AM, Carvajal A, Fernández-Hernando P, Lucía A (1999) Trace elements and electrolytes in human resting mixed saliva after exercise. Br J Sports Med 33:204–207

    CAS  Google Scholar 

  32. Chee KY, Lee D, Byron D, Naidoo D, Bye A (1993) A simple collection method for saliva in children potential for home monitoring of carbamazepine therapy. Br J Clin Pharmacol 35:311–313

    CAS  Google Scholar 

  33. Claus Henn B, McMaster S, Padilla S (2006) Measuring cholinesterase activity in human saliva. J Toxicol Environ Health A 69:1805–1818

    Google Scholar 

  34. Costa de Almeida GR, de Freitas Tavares CF, de Souza AM, Sampaio de Sousa T, Rodrigues Funayama CA, Barbosa F Jr, Tanus-Santos JE, Gerlach RF (2010) Whole blood, serum, and saliva lead concentrations in 6- to 8-year-old children. Sci Total Environ 408:1551–1556

    CAS  Google Scholar 

  35. Costa de Almeida GR, Umbelina de Freitas C, Tanus-Santos FBJE, Gerlach RF (2009) Lead in saliva from lead exposed and unexposed children. Sci Tot Environ 407:1547–1550

    CAS  Google Scholar 

  36. Cowan DM, Fan Q, Zou Y, Shi X, Chen J, Aschner M, Rosenthal FS, Zheng W (2009) Manganese exposure among smelting workers: blood manganese-iron ratio as a novel tool for manganese exposure assessment. Biomarkers 14:3–16

    CAS  Google Scholar 

  37. Crooks PA (1999) Chemical properties of nicotine and other tobacco-related compounds. In: Gorrod JW, Jacob P (eds) Analytical Determination of Nicotine and Related Compounds and their Metabolites. Elsevier, Amsterdam, pp 69–147

    Google Scholar 

  38. Crouch DJ (2005) Oral fluid collection: the neglected variable in oral fluid testing. Forensic Sci Int 150:165–173

    CAS  Google Scholar 

  39. Curvall M, Elwin CE, Kazemi-Vala E, Warholm C, Enzell CR (1990) The pharmacokinetics of cotinine in plasma and saliva from non-smoking healthy volunteers. Eur J Clin Pharmacol 38:281–287

    CAS  Google Scholar 

  40. Curzon ME (1984) Strontium concentrations in whole human saliva. Arch Oral Biol 29:211–214

    CAS  Google Scholar 

  41. Davis RA, Curvall M (1999) Determination of nicotine and its metabolites in biological fluids in vivo studies. In: Gorrod JW, Jacob P (eds) Analytical determination of nicotine and related compounds and their metabolites. Elsevier, Amsterdam, pp 583–643

    Google Scholar 

  42. Dawes C (1972) Circadian rhythms in human salivary flow rate and composition. J Physiol 220:529–545

    CAS  Google Scholar 

  43. Dawes C, Wood CM (1973) The contribution of oral minor mucous gland secretions to the volume of whole saliva in man. Arch Oral Biol 18:337–342

    CAS  Google Scholar 

  44. Denovan LA, Lu C, Hines CJ, Fenske RA (2000) Saliva biomonitoring of atrazine exposure among herbicide applicators. Int Arch Occup Environ Health 73:457–462

    CAS  Google Scholar 

  45. DiGregorio GJ, Ferko AP, Sample RG, Bobycock E, McMichael R, Chernick WS (1974) Lead and δ-aminolevulinic acid concentrations in human parotid saliva. Toxicol Appl Pharmacol 27:491–493

    CAS  Google Scholar 

  46. Djozan D, Jozan S, Aminian R, Baheri T (2010) SPME and GC-MS analysis of triethylene glycol dimethacrylate released from dental composite. J Chromatogr Sci 48:130–133

    CAS  Google Scholar 

  47. Duggal MS, Chawla HS, Curzon MEJ (1991) A study of the relationship between trace elements in saliva and dental caries in children. Arch Oral Biol 36:881–884

    CAS  Google Scholar 

  48. Dunemann L, Begerow J (1995) Kopplungstechniken zur Elementspeziesanalytik. Wiley-VCH, Weinheim

    Google Scholar 

  49. Edgar WM (1992) Saliva: its secretion, composition and functions. Br Dent J 172:305–312

    CAS  Google Scholar 

  50. Eliasson L, Carlén A (2010) An update on minor salivary gland secretions. Eur J Oral Sci 118:435–442

    Google Scholar 

  51. Elliott P, Peakman TC (2008) The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol 37:234–244

    Google Scholar 

  52. El-Sadik YM, Abdel-Aziz el-Dakhakhny (1970) Effects of exposure of workers to mercury at a sodium hydroxide producing plant. Am Ind Hyg Assoc J 31:705–710

    CAS  Google Scholar 

  53. Ernstgård L (2009) Influence of gender on the metabolism of alcohols in human saliva in vitro. Arch Oral Biol 54:737–742

    Google Scholar 

  54. Ernstgård L, Shibata E, Johanson G (2005) Uptake and disposition of inhaled methanol vapor in humans. Toxicol Sci 88:30–38

    Google Scholar 

  55. Ernstgård L, Sjögren B, Warholm M, Johanson G (2003a) Sex differences in the toxicokinetics of inhaled solvent vapors in humans 1: m-Xylene. Toxicol Appl Pharmacol 193:147–157

    Google Scholar 

  56. Ernstgård L, Sjögren B, Warholm M, Johanson G (2003b) Sex differences in the toxicokinetics of inhaled solvent vapors in humans 2: 2-propanol. Toxicol Appl Pharmacol 193:158–167

    Google Scholar 

  57. Etzel RA (1990) A review of the use of saliva cotinine as a marker of tobacco smoke exposure. Prev Med 19:190–197

    CAS  Google Scholar 

  58. Ferrari M, Negri S, Zadra P, Ghittori S, Imbriani M (2008) Saliva as an analytical tool to measure occupational exposure to toluene. Int Arch Occup Environ Health 81:1021–1028

    CAS  Google Scholar 

  59. Fox PC, van der Ven PF, Sonies BC, Weiffenbach JM, Baum BJ (1985) Xerostomia evaluation of a symptom with increasing significance. J Am Dent Assoc 110:519–525

    CAS  Google Scholar 

  60. Freeland-Graves JH, Bodzy PW, Eppright MA (1980) Zinc status of vegetarians. J Am Diet Assoc 77:655–661

    CAS  Google Scholar 

  61. Freitas MP, Oshima HM, Menezes LM (2011) Release of toxic ions from silver solder used in orthodontics an in situ evaluation. Am J Orthod Dentofacial Orthop 140:177–181

    Google Scholar 

  62. Fucci N, De Giovanni N, Chiarotti M (2003) Simultaneous detection of some drugs of abuse in saliva samples by SPME technique. Forensic Sci Int 134:40–45

    CAS  Google Scholar 

  63. Gabrielsson J, Bondesson U (1987) Constant-rate infusion of nicotine and cotinine: a physiological pharmacokinetic analysis of the cotinine disposition, and effects on clearance and distribution in the rat. J Pharm Biopharm 15:583–599

    CAS  Google Scholar 

  64. Game I, Balabanoff L, Valdebenito R, Vivaldi L (1986) Use of a matrix modifier and L‘vov platform in the determination of copper in pooled human saliva by electrothermal atomic absorption spectrometry. Analyst 111:1139–1141

    CAS  Google Scholar 

  65. Ganss C, Gottwald B, Traenckner I, Kupfer J, Eis D, Mönch J, Gieler U, Klimek J (2000) Relation between mercury concentrations in saliva, blood, and urine in subjects with amalgam restorations. Clin Oral Investig 4:206–211

    CAS  Google Scholar 

  66. Gentili S, Torresi A, Marsili R, Chiarotti M, Macchia T (2002) Simultaneous detection of amphetamine-like drugs with headspace solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr B 780:183–192

    CAS  Google Scholar 

  67. Gervais L, Lacasse Y, Brodeur J, P’an A (1981) Presence of cadmium in the saliva of adult male workers. Toxicol Lett 8:63–66

    CAS  Google Scholar 

  68. Gil F, Hernández AF, Márquez C, Femia P, Olmedo P, López-Guarnido O, Pla A (2011) Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci Total Environ 409:1172–1180

    CAS  Google Scholar 

  69. Giolo De Carvalho F, Rosa FT, Marques Miguel Suen V, Freitas EC, Padovan GJ, Marchini JS (2012) Evidence of zinc deficiency in competitive swimmers. Nutrition 28:1127–1131

    CAS  Google Scholar 

  70. Gonzalez M, Banderas JA, Baez A, Belmont R (1997) Salivary lead and cadmium in a young population residing in Mexico City. Toxicol Lett 93:55–64

    CAS  Google Scholar 

  71. Gorber SC, Schofield-Hurwitz S, Hardt J, Levasseur G, Tremblay M (2009) The accuracy of self-reported smoking: a systematic review of the relationship between self-reported and cotinine-assessed smoking status. Nicotine Tob Res 11:12–24

    Google Scholar 

  72. Granger DA, Kivlighan KT, Fortunato C, Harmon AG, Hibel LC, Schwartz EB, Whembolua GL (2007) Integration of salivary biomarkers into developmental and behaviorally-oriented research problems and solutions for collecting specimens. Physiol Behav 92:583–590

    CAS  Google Scholar 

  73. Gröschl M, Kohler H, Topf HG, Rupprecht T, Rauh M (2008) Evaluation of saliva collection devices for the analysis of steroids, peptides and therapeutic drugs. J Pharm Biomed Anal 47:478–486

    Google Scholar 

  74. Gubala W, Zuba D (2002) Saliva as an alternative specimen for alcohol determination in the human body. Polish J Pharmacol 54:161–165

    CAS  Google Scholar 

  75. Haeckel R (1993) Factors influencing the saliva/plasma ratio of drugs. Ann NY Acad Sci 694:128–142

    CAS  Google Scholar 

  76. Haeckel R, Peiffer U (1992) Comparison of ethanol concentration in saliva and blood from police controlled persons. Blutalkohol 29:342–349

    CAS  Google Scholar 

  77. Hall BJ, Satterfield-Doerr M, Parikh AR, Brodbelt JS (1998) Determination of cannabinoids in water and human saliva by solid-phase microextraction and quadrupole ion trap gas chromatography/mass spectrometry. Anal Chem 70:1788–1796

    CAS  Google Scholar 

  78. Han DH, Kim MJ, Jun EJ, Kim JB (2012) Salivary bisphenol A levels due to dental sealant/resin: a case-control study in Korean children. J Korean Med Sci 27:1098–1104

    CAS  Google Scholar 

  79. Hanning S, Motoi L, Medlicott N, Swindells S (2012) A device for the collection of submandibular saliva. N Z Dent J 108:4–8

    Google Scholar 

  80. Hanrahan K, McCarthy AM, Kleiber C, Lutgendorf S, Tsalikian E (2006) Strategies for salivary cortisol collection and analysis in research with children. Appl Nurs Res 19:95–101

    Google Scholar 

  81. Haufroid V, Lison D (1998) Urinary cotinine as a tobacco-smoke exposure index: a minireview. Int Arch Occup Environ Health 71:162–168

    CAS  Google Scholar 

  82. Heberlein A, Lenz B, Degner D, Kornhuber J, Hillemacher T, Bleich S (2010) Methanol levels in saliva-a non-invasive parameter that may be useful in detection of alcohol intoxication. Alcohol 45:126–127

    CAS  Google Scholar 

  83. Henson BS, Wong DT (2010) Collection, storage, and processing of saliva samples for downstream molecular applications. Methods Mol Biol 666:21–30

    Google Scholar 

  84. Hill SJ, Bloxham MJ, Worsfold PJ (1993) Chromatography coupled with inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry: a review. J Anal At Spectrom 8:499–515

    CAS  Google Scholar 

  85. Hines EP, Calafat AM, Silva MJ, Mendola P, Fenton SE (2009) Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women. Environ Health Perspec 117:86–92

    CAS  Google Scholar 

  86. Hines CJ, Deddens JA, Lu C, Fenske R, Striley CAF (2006) Mixed-effect models for evaluating multiple measures of atrazine exposure among custom applicators. J Occup Environ Hyg 3:274–283

    CAS  Google Scholar 

  87. Hofman LF (2001) Human saliva as a diagnostic specimen. J Nutr 131:S1621S–S1625S

    Google Scholar 

  88. Hold KM, de Boer D, Zuidema J, Maes RAA (1999) Saliva as an analytical tool in toxicology. Int J Drug Testing 1:1–36

    Google Scholar 

  89. Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85:162–169

    CAS  Google Scholar 

  90. IARC (International Agency for Research on Cancer) (2007) Common Minimum Technical Standards and Protocols for Biological Resource Centres Dedicated to Cancer Research. IARC Working Group Reports, Volume 2

  91. Istvan JA, Nides MA, Buist AS, Greene P, Voelker H (1994) Salivary cotinine, frequency of cigarette smoking, and body mass index: findings at baseline in the lung. Health Study Am J Epidemiol 139:628–636

    CAS  Google Scholar 

  92. Izutsu KT, Schubert MM, Truelove EL, Johnson DE (1987) Use of human minor salivary glands in basic and applied secretion research. J Dent Res 66:654–659

    Google Scholar 

  93. Jarczyk L, Scherer G, Adlkofer F (1989) Serum and saliva concentrations of cotinine in smokers and passive smokers. J Clin Chem Biochem 27:230–231

    CAS  Google Scholar 

  94. Jarvis MJ, Boreham R, Primatesta P, Feyerabend C, Bryant A (2001) Nicotine yield from machine-smoked cigarettes and nicotine intake in smokers: evidence from a representative population survey. J Nat Cancer Inst 93:134–138

    CAS  Google Scholar 

  95. Jarvis MJ, McNeill AD, Bryant A, Russell MAH (1991) Factors determining exposure to passive smoking in young adults living at home: quantitative analysis using saliva cotinine concentrations. Int J Epidemiol 20:126–131

    CAS  Google Scholar 

  96. Jarvis MJ, Russell MAH, Benowitz NL, Feyerabend C (1988) Elimination of cotinine from body fluids: Implications for noninvasive measurement of tobacco smoke exposure. Am J Pub Health 78:696–698

    CAS  Google Scholar 

  97. Jatlow P, McKee S, O’Malley SS (2003) Correction of urine cotinine concentrations for creatinine excretion: is it useful? Clin Chem 49:1932–1934

    CAS  Google Scholar 

  98. Jones AW (1979) Distribution of ethanol between saliva and blood in man. Clin Exp Pharmacol Physiol 6:53–59

    CAS  Google Scholar 

  99. Jusko WJ, Milsap RL (1993) Pharmacokinetic principles of drug distribution in saliva. Ann NY Acad Sci 694:36–46

    CAS  Google Scholar 

  100. Kaufman E, Lamster IB (2002) The diagnostic applications of saliva—a review. Crit Rev Oral Biol Med 13:197–212

    Google Scholar 

  101. Kapsimali DC, Zachariadis GA (2009) Headspace and direct immersion solid phase microextraction procedures for selenite determination in urine, saliva and milk by gas chromatography mass spectrometry. J Chromatogr B 877:3210–3214

    CAS  Google Scholar 

  102. Kariyawasam AP, Dawes C (2005) A circannual rhythm in unstimulated salivary flow rate when the ambient temperature varies by only about 2 degrees. C Arch Oral Biol 50:919–922

    CAS  Google Scholar 

  103. Kataoka H, Ehara K, Yasuhara R, Saito K (2013) Simultaneous determination of testosterone, cortisol, and dehydroepiandrosterone in saliva by stable isotope dilution on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 405:331–340

    CAS  Google Scholar 

  104. Kataoka H, Inoue R, Yagi K, Saito K (2009) Determination of nicotine, cotinine, and related alkaloids in human urine and saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J Pharm Biomed Anal 49:108–114

    CAS  Google Scholar 

  105. Kataoka H, Matsuura E, Mitani K (2007) Determination of cortisol in human saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J Pharm Biomed Anal 44:160–165

    CAS  Google Scholar 

  106. Keruso H, Moe G, Hensten-Pettersen A (1997) Salivary nickel and chromium in subjects with different types of fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 111:595–598

    Google Scholar 

  107. Kim YJ, Kim YK, Kho HS (2010) Effects of smoking on trace metal levels in saliva. Oral Dis 16:823–830

    Google Scholar 

  108. Kippler M, Nermell B, Hamadani J, Tofail F, Moore S, Vahter M (2010) Burden of cadmium in early childhood: longitudinal assessment of urinary cadmium in rural Bangladesh. Toxicol Lett 198:20–25

    CAS  Google Scholar 

  109. Kloukos D, Pandis N, Eliades T (2013) In vivo bisphenol-a release from dental pit and fissure sealants: a systematic review. J Dent 41:659–667

    CAS  Google Scholar 

  110. Kocadereli L, Ataç PA, Kale PS, Ozer D (2000) Salivary nickel and chromium in patients with fixed orthodontic appliances. Angle Orthod 70:431–434

    CAS  Google Scholar 

  111. Koch HM, Christensen KLY, Harth V, Lorber M, Brüning T (2012) Di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single oral doses. Arch Toxicol 86:1829–1839

    CAS  Google Scholar 

  112. Koh DSO, Koh GCH (2007) The use of salivary biomarker in occupational and environmental medicine. Occup Environ Med 64:202–210

    CAS  Google Scholar 

  113. Krieger RI, Dinoff TM (2000) Malathion deposition, metabolite clearance, and cholinesterase status of date dusters and harvesters in California. Arch Environ Contam Toxicol 38:546–553

    CAS  Google Scholar 

  114. Lamey PJ, Nolan A (1994) The recovery of human saliva using the Salivette system. Eur J Clin Chem Clin Biochem 32:727–728

    CAS  Google Scholar 

  115. Lanaro R, Costa JL, Fernandes LC, Resende RR, Tavares MF (2011) Detection of paraquat in oral fluid, plasma, and urine by capillary electrophoresis for diagnosis of acute poisoning. J Anal Toxicol 35:274–279

    CAS  Google Scholar 

  116. Lashley KS (1916) The human salivary reflex and its use in psychology. Psychol Rev 23:446–464

    Google Scholar 

  117. Lee PN (1999) Uses and abuses of cotinine as a marker of tobacco smoke exposure. In: Gorrod JW, Jacob IP (eds) Nicotine and related compounds and their metabolites. Elsevier, Amsterdam, pp 669–719

    Google Scholar 

  118. Lee PN (1987) Passive smoking and lung cancer association: a result of bias? Hum Toxicol 6:517–524

    CAS  Google Scholar 

  119. Lentner C (1985) Wissenschaftliche Tabellen Geigy: Einheiten im Messwesen: Körperflüssigkeiten, Organe, Energiehaushalt Ernährung. Ciba-Geigy AG, Basel

    Google Scholar 

  120. Lew K, Acker JP, Gabos S, Le XC (2010) Biomonitoring of arsenic in urine and saliva of children playing on playgrounds constructed from chromated copper arsenate-treated wood. Environ Sci Technol 44:3986–3991

    CAS  Google Scholar 

  121. Lu C, Rodríguez T, Funez A, Irish RS, Fenske RA (2006) The assessment of occupational exposure to diazinon in Nicaraguan plantation workers using saliva biomonitoring. Ann NY Acad Sci 1076:355–365

    CAS  Google Scholar 

  122. Lu C, Irish RM, Fenske R (2003) Biological monitoring of diazinon exposure using saliva in an animal model. J Toxicol Environ Health A 66:2315–2325

    CAS  Google Scholar 

  123. Lu C, Anderson LC, Morgan MS, Fenske RA (1998) Salivary concentrations of atrazine reflect free atrazine plasma levels in rats. J Toxicol Environ Health A 53:283–292

    CAS  Google Scholar 

  124. Lu C, Anderson LC, Fenske RA (1997a) Determination of atrazine levels in whole saliva and plasma in rats: potential of salivary monitoring for occupational exposure. J Toxicol Environ Health 50:101–111

    CAS  Google Scholar 

  125. Lu C, Anderson LC, Morgan MS, Fenske RA (1997b) Correspondence of salivary and plasma concentrations of atrazine in rats under variable salivary flow rate and plasma concentration. J Toxicol Environ Health 52:317–329

    CAS  Google Scholar 

  126. Lygre GB, Høl PJ, Eide R, Isrenn R, Gjerdet NR (1999) Mercury and silver in saliva from subjects with symptoms self-related to amalgam fillings. Clin Oral Invest 3:216–218

    CAS  Google Scholar 

  127. Maleki R, Farhadi K, Matin AA (2006) Analysis of ethanol and methanol in human body fluids by headspace solid phase microextraction coupled with capillary gas chromatography. Anal Sci 22:1253–1255

    CAS  Google Scholar 

  128. Matos de Souza R, Macedo de Menezes L (2008) Nickel, chromium and iron levels in the saliva of patients with simulated fixed orthodontic appliances. Angle Orthod 78:345–350

    Google Scholar 

  129. McColl KE, Whiting B, Moore MR, Goldberg A (1979) Correlation of ethanol concentrations in blood and saliva. Clin Sci 56:283–286

    CAS  Google Scholar 

  130. McNeill AD, Jarvis MJ, West R, Russell MAH, Bryant A (1987) Saliva cotinine as an indicator of cigarette smoking in adolescents. Brit J Addiction 82:1355–1360

    CAS  Google Scholar 

  131. Melchart D, Köhler W, Linde K, Zilker T, Kremers L, Saller R, Halbach S (2008) Biomonitoring of mercury in patients with complaints attributed to dental amalgam, healthy amalgam bearers, and amalgam-free subjects: a diagnostic study. Clin Toxicol 46:133–140

    CAS  Google Scholar 

  132. Menegário AA, Packer AP, Giné MF (2001) Determination of Ba, Cd, Cu, Pb and Zn in saliva by isotope dilution direct injection inductively coupled plasma mass spectrometry. Analyst 126:1363–1366

    Google Scholar 

  133. Michishig F, Kanno K, Yoshinaga S, Hinode D, Takehisa Y, Yasuoka S (2006) Effect of saliva collection method on the concentration of protein components in saliva. J Med Invest 53:140–146

    Google Scholar 

  134. Milman BL (2003) Cluster ions of diquat and paraquat in electrospray ionization mass spectra and their collision-induced dissociation spectra. Rapid Commun Mass Spectrom 17:1344–1349

    CAS  Google Scholar 

  135. Mobarak N, Pán AYS (1984) Lead distribution in saliva and blood fractions of rats after intraperitoneal injections. Toxicology 32:67–74

    CAS  Google Scholar 

  136. Monaci F, Bargagli E, Bravi F, Rottooli P (2002) Concentrations of major elements and mercury in unstimulated human saliva. Biol Trace Element Res 89:193–203

    CAS  Google Scholar 

  137. Mullangi R, Agrawal S, Srinivas NR (2009) Measurement of xenobiotics in saliva: is saliva an attractive alternative matrix? Case studies and analytical perspectives. Biomed Chromatogr 23:3–25

    CAS  Google Scholar 

  138. Musteata FM, Pawliszyn J (2005) Assay of stability, free and total concentration of chlorhexidine in saliva by solid phase microextraction. J Pharm Biomed Anal 37:1015–1024

    CAS  Google Scholar 

  139. Navazesh M (1993) Methods for collecting saliva. Ann NY Acad Sci 694:72–77

    CAS  Google Scholar 

  140. Navazesh M, Brightman VJ, Pogoda JM (1996) Relationship of medical status, medications, and salivary flow rates in adults of different ages. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 81:172–176

    CAS  Google Scholar 

  141. Navazesh M, Christensen CM (1982) A comparison of whole mouth resting and stimulated salivary measurement procedures. J Dent Res 61:1158–1162

    CAS  Google Scholar 

  142. Ng V, Koh D, Wee A, Chia SE (2009) Salivary acetylcholinesterase as a biomarker for organophosphate exposure. Occup Med 59:120–122

    Google Scholar 

  143. Nigg HN, Stamper JH, Mallory LL (1993) Quantification of human exposure to ethion using saliva. Chemosphere 26:897–906

    CAS  Google Scholar 

  144. Nriagu J, Burt B, Linder A, Ismail A, Sohn W (2006) Lead levels in blood and saliva in a low-income population of Detroit, Michigan. Int J Hyg Environ Health 209:109–121

    CAS  Google Scholar 

  145. Olmez I, Gulovali MC, Gordon GE, Henkin RI (1988) Trace elements in human parotid saliva. Biol Trace Elem Res 17:259–270

    CAS  Google Scholar 

  146. Örtendahl TW, Holland RI, Röckert HO (1989) Studies in oral galvanism: mercury and copper levels in urine, blood and saliva in submerged electrically cutting divers. J Oral Rehabil 16:559–573

    Google Scholar 

  147. Parr GR, Bustos-Valdes SE (1984) A modified segregator for collection of human submandibular and sublingual saliva. Arch Oral Biol 29:69–71

    CAS  Google Scholar 

  148. Pawliszyn J (1995) New directions in sample preparation for analysis of organic compounds. Trends Analyt Chem 14:113–122

    CAS  Google Scholar 

  149. Pekiner FN, Gümrü B, Demirel GY, Ozbayrak S (2009) Burning mouth syndrome and saliva detection of salivary trace elements and cytokines. J Oral Pathol Med 38:269–275

    CAS  Google Scholar 

  150. Percival RS, Challacombe SJ, Marsh PD (1994) Flow rates of resting whole and stimulated parotid saliva in relation to age and gender. J Dent Res 73:1416–1420

    CAS  Google Scholar 

  151. Pesch A, Wilhelm M, Rostek U, Schmitz N, Weishoff-Houben M, Ranft U, Idel H (2002) Mercury concentrations in urine, scalp hair, and saliva in children from Germany. J Expo Anal Environ Epidemiol 12:252–258

    CAS  Google Scholar 

  152. Pizzichini M, Fonzia M, Sugherinib L, Fonzia L, Gasparonia A, Comportib M, Pompellaba M (2002) Release of mercury from dental amalgam and its influence on salivary antioxidant activity. Sci Total Environ 284:19–25

    CAS  Google Scholar 

  153. Pragst F (2007) Application of solid-phase microextraction in analytical toxicology. Anal Bioanal Chem 388:1393–1414

    CAS  Google Scholar 

  154. Psoter WJ, Spielman AL, Gebrian B, StJean R, Katz RV (2008) Effect of childhood malnutrition on salivary flow and pH. Arch Oral Biol 53:231–237

    CAS  Google Scholar 

  155. Rebagliato M, Bolumar F, Florey CD (1995) Assessment of exposure to environmental tobacco smoke in nonsmoking pregnant women in different environments of daily living. Am J Epidemiol 142:525–530

    CAS  Google Scholar 

  156. Rose DM, Muttray A, Mayer-Popken O, Jung D, Konietzko J (1999) Saliva as an alternate for blood to measure concentrations of acetone under exposure to isopropanol. Eur J Med Res 4:529–532

    CAS  Google Scholar 

  157. dos Santos Lucas AC, Bermejo A, Fernández P, Tabernero MJ (2000) Solid-phase microextraction in the determination of methadone in human saliva by gas chromatography-mass spectrometry. J Anal Toxicol 24:93–96

    CAS  Google Scholar 

  158. Schenkels LC, Veerman EC, Nieuw Amerongen AV (1995) Biochemical composition of human saliva in relation to other mucosal fluids. Crit Rev Oral Biol Med 6:161–175

    CAS  Google Scholar 

  159. Scherer G, Engl J, Urban M, Gilch G, Janket D, Riedel K (2007) Relationship between machine-derived smoke yields and biomarkers in cigarette smokers in Germany. Regul Toxicol Pharmacol 47:171–183

    CAS  Google Scholar 

  160. Schipper RG, Silletti E, Vingerhoeds MH (2007) Saliva as research material biochemical, physicochemical and practical aspects. Arch Oral Biol 52:1114–1135

    CAS  Google Scholar 

  161. Schramm W, Smith RH, Craig PA (1993) Methods of simplified saliva collection for the measurement of drugs of abuse, therapeutic drugs, and other molecules. Ann NY Acad Sci 694:311–313

    CAS  Google Scholar 

  162. Shannon IL, Prigmore JR, Chauncey HH (1962) Modified Carlson-Crittenden device for the collection of parotid fluid. J Dent Res 41:778–783

    CAS  Google Scholar 

  163. Shern RJ, Fox PC, Cain JL, Li SH (1990) A method for measuring the flow of saliva from the minor salivary glands. J Dent Res 69:1146–1149

    Google Scholar 

  164. Shern RJ, Fox PC, Li SH (1993) Influence of age on the secretory rates of the human minor salivary glands and whole saliva. Arch Oral Biol 38:755–761

    CAS  Google Scholar 

  165. Shigemi T, Tanaka T, Hayashida Y, Maki K (2008) Study of salivary strontium and silver concentrations in primary school children related to dental caries. Biol Trace Elem Res 123:80–90

    CAS  Google Scholar 

  166. Siegel IA (1992) Use of saliva to monitor drug concentrations. In: Sreebny LM (ed) The salivary system. CRC Press, Boca Raton, pp 157–202

    Google Scholar 

  167. Sighinolfi GP, Gorgoni C, Bonor O, Cantoni E, Martelli M, Simonetti L (1989) Comprehensive determination of trace elements in human saliva by ETA-AAS. Mikrochim Acta 1:171–179

    CAS  Google Scholar 

  168. Silva MJ, Barr DB, Reidy JA, Kato K, Malek NA, Hodge CC, Hurtz D, Calafat AM, Needham LL, Brock JW (2003) Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Arch Toxicol 77:561–567

    CAS  Google Scholar 

  169. Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, Caudill SP, Brock JW, Needham LL, Calafat AM (2004) Urinary levels of seven phthalate metabolites in the US population from the national health and nutrition examination survey (NHANES) 1999–2000. Environ Health Perspect 112:331–338

    CAS  Google Scholar 

  170. Silva MJ, Reidy JA, Samandar E, Herbert AR, Needham LL, Calafat AM (2005) Detection of phthalate metabolites in human saliva. Arch Toxicol 79:647–652

    CAS  Google Scholar 

  171. Slomiany BL, Murty VL, Slomiany A (1985) Salivary lipids in health and disease. Prog Lipid Res 24:311–324

    CAS  Google Scholar 

  172. Slowey PD (2013) Commercial saliva collections tools. J Calif Dent Assoc 41(97–9):102–105

    Google Scholar 

  173. Smidt D, Torpet LA, Nauntofte B, Heegaard KM, Pedersen AM (2010) Associations between labial and whole salivary flow rates, systemic diseases and medications in a sample of older people community. Dent Oral Epidemiol 38:422–435

    Google Scholar 

  174. Smith JN, Wang J, Lin Y, Klohe EM, Timchalk C (2012) Pharmacokinetics and pharmacodynamics of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol in rat saliva after chlorpyrifos administration. Toxicol Sci 130:245–256

    CAS  Google Scholar 

  175. Smith JN, Wang J, Lin Y, Timchalk C (2010) Pharmacokinetics of the chlorpyrifos metabolite 3, 5, 6-trichloro-2-pyridinol (TCPy) in rat saliva. Toxicol Sci 113:315–325

    CAS  Google Scholar 

  176. Sonesson M (2011) On minor salivary gland secretion in children, adolescents and adults. Swed Dent J Suppl 215:9–64

    Google Scholar 

  177. Speirs RL (1984) Secretion of saliva by human lip mucous glands and parotid glands in response to gustatory stimuli and chewing. Arch Oral Biol 29:945–948

    CAS  Google Scholar 

  178. SRC Interactive PhysProp Database. http://www.srcinc.com/what-we-do/environmental/scientific-databases.html. Accessed on 28 Feb 2014

  179. Stephen KW, Lamb AB, McCrossan J (1978) A modified appliance for the collection of human submandibular and sublingual salivas. Arch Oral Biol 23:835–837

    CAS  Google Scholar 

  180. Timchalk C, Campbell JA, Liu G, Lin Y, Kousba AA (2007) Development of a non-invasive biomonitoring approach to determine exposure to the organophosphorus insecticide chlorpyrifos in rat saliva. Toxicol Appl Pharmacol 219:217–225

    CAS  Google Scholar 

  181. Timchalk C, Poet TS, Kousba AA, Campbell JA, Lin Y (2004) Noninvasive biomonitoring approaches to determine dosimetry and risk following acute chemical exposure analysis of lead or organophosphate insecticide in saliva. J Toxicol Environ Health A 67:635–650

    CAS  Google Scholar 

  182. Timchalk C, Poet TS, Lin Y, Weitz KK, Zhao R, Thrall K (2001) Development of an integrated microanalytical system for analysis of lead in saliva and linkage to a physiologically based pharmaco-kinetic model describing saliva secretion. Am Ind Hyg Assoc J 62:295–302

    CAS  Google Scholar 

  183. Tomita M, Nishimura N (1982) Using salvia to estimate human exposure to organic solvents. Bull Tokyo Dent Coll 23:175–188

    CAS  Google Scholar 

  184. Truelove EL, Bixler D, Merritt AD (1967) Simplified method for collection of pure submandibular saliva in large volumes. J Dent Res 46:1400–1403

    CAS  Google Scholar 

  185. Turnlund JR, Keen CL, Smith RG (1990) Copper status and urinary and salivary copper in young men at three levels of dietary copper. Am J Clin Nutr 51:658–664

    CAS  Google Scholar 

  186. van Vunakis H, Tashkin DP, Rigas B, Simmons M, Gjika HB, Clark VA (1989) Relative sensitivity and specificity of salivary and serum cotinine in identifying tobacco-smoking status of self-reported nonsmokers and smokers of tobacco and/or Marijuana. Arch Environ Health 44:53–58

    Google Scholar 

  187. Wang VS, Chang TY, Lai CC, Chen SY, Huang LC, Chao KP (2012) Application of solid phase microextraction on dental composite resin analysis. J Chromatogr B 903:88–94

    CAS  Google Scholar 

  188. Wang VS, Lu MY (2009) Application of solid-phase microextraction and gas chromatography-mass spectrometry for measuring chemicals in saliva of synthetic leather workers. J Chromatogr B 877:24–32

    CAS  Google Scholar 

  189. Wang D, Du X, Zheng W (2008) Alteration of saliva and serum concentrations of manganese, copper, zinc, cadmium and lead among career welders. Toxicol Lett 176:40–47

    CAS  Google Scholar 

  190. Watanabe K, Tanaka T, Shigemi T, Saeki K, Fujita Y, Morikawa K, Nakashima H, Takahashi S, Watanabe S, Maki K (2011) Al and Fe levels in mixed saliva of children related to elution behavior from teeth and restorations. J Trace Elem Med Biol 25:143–148

    CAS  Google Scholar 

  191. Watanabe K, Tanaka T, Shigemi T, Hayashida Y, Maki K (2009) Mn and Cu concentrations in mixed saliva of elementary school children in relation to sex, age, and dental caries. J Trace Elem Med Biol 23:93–99

    CAS  Google Scholar 

  192. Watanabe M, Asatsuma M, Ikui A, Ikeda M, Yamada Y, Nomura S, Igarashi A (2005) Measurements of several metallic elements and matrix metalloproteinases (MMPs) in saliva from patients with taste disorder. Chem Senses 30:121–125

    CAS  Google Scholar 

  193. White MA, O’Hagan SA, Wright AL, Wilson HK (1992) The measurement of salivary cadmium by electrothermal atomic absorption spectrophotometry and its use as a biological indicator of occupational exposure. J Expo Anal Environ Epidemiol 2:195–206

    CAS  Google Scholar 

  194. Wilhelm M, Pesch A, Rostek U, Begerow J, Schmitz N, Idel H, Ranft U (2002) Concentrations of lead in blood, hair and saliva of German children living in three different areas of traffic density. Sci Total Environ 297:109–118

    CAS  Google Scholar 

  195. Wolff A, Begleiter A, Moskona D (1997) A novel system of human submandibular/sublingual saliva collection. J Dent Res 76:1782–1786

    CAS  Google Scholar 

  196. Yonamine M, Tawil N, Moreau RL, Silva OA (2003) Solid-phase micro-extraction-gas chromatography-mass spectrometry and headspace-gas chromatography of tetrahydrocannabinol, amphetamine, methamphetamine, cocaine and ethanol in saliva samples. J Chromatogr B 789:73–78

    CAS  Google Scholar 

  197. Zachariadis GA, Kapsimali DC (2008) Effect of sample matrix on sensitivity of mercury and methylmercury quantitation in human urine, saliva, and serum using GC-MS. J Sep Sci 31:3884–3893

    CAS  Google Scholar 

  198. Zahir S, Sarkar S (2006) Study of trace elements in mixed saliva of caries free and caries active children. Official publication of Indian Society of Pedodontics and Preventive Dentistry 24:27–29

    CAS  Google Scholar 

  199. Zaichick VA, Tsyb AF, Bagirov S (1995) Neutron activation analysis of saliva application in clinical chemistry, environmental and occupational toxicology. J Radioanal Nucl Chem 195:123–132

    CAS  Google Scholar 

  200. Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852

    CAS  Google Scholar 

Download references

Acknowledgments

The activity of the working group is supported by the Deutsche Forschungsgemeinschaft (GO 782/1-18). The DFG Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area is indebted to all members and external experts of the AiBM working group for their contributions to the tasks of the commission. The authors would like to thank Lukas Schmidt for preparing of the figures and Michaela Förster for proof-reading of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Göen.

Additional information

This paper is based on the consensus of the Working Group “Analyses of Hazardous Substances in Biological Materials” (AiBM) of the DFG Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Michalke, B., Rossbach, B., Göen, T. et al. Saliva as a matrix for human biomonitoring in occupational and environmental medicine. Int Arch Occup Environ Health 88, 1–44 (2015). https://doi.org/10.1007/s00420-014-0938-5

Download citation

Keywords

  • Human biomonitoring
  • Saliva
  • Salivary biomarkers
  • Saliva collection
  • Chemical exposure