Occupational styrene exposure and hearing loss: a cohort study with repeated measurements

  • Gerhard Triebig
  • Thomas Bruckner
  • Andreas Seeber
Original Article



Associations between occupational styrene exposure and impairment of hearing function were investigated, guided by three questions: are there hearing losses concerning high frequency and standard audiometric test? Are there dose–response relationships and measurable thresholds of effects? Are there signs of reversibility of possible effects if the workers are examined during times of improvement from their work?


A group of workers from a boat building plant, some of whom were laminators, were examined in subgroups of current low (n = 99, mean mandelic acid MA + phenylglyoxylic acid PGA = 51 mg/g creatinine), medium (n = 118, mean 229 mg/g creat.) and high (n = 31, mean 970 mg/g creat.) exposure to styrene. In addition, subgroups chronically exposed to high-long (n = 17) and low-short (n = 34) styrene levels were analysed. The examinations were carried out during normal work days and during the company holidays. Hearing thresholds and transient evoked otoacoustic emissions (TEOAE) were measured. Statistics included multiple co-variance analyses with repeated measures, linear regressions, and logistic regressions.


The analyses of all participants demonstrated no clear exposure effects. Particularly no sufficient proof of dose–response relationship measured against parameters of current exposure (MA + PGA, styrene/blood) and of chronic exposure (cumulative and average life time exposure resp.) was found. The analyses of groups exposed to high levels show elevated thresholds at frequencies up to 1,500 Hz among the subgroup exposed to high styrene levels (e.g. 40–50 ppm as average) for a longer period of time (e.g. more than 10 years). These participants also demonstrated signs of “improvement” at frequencies above 2,000 Hz during work holidays, when they were not exposed to styrene. A significantly elevated odds ratio for cases of hearing loss (more than 25 dB (A) in one ear, 3,000–6,000 Hz) was found among the group exposed to high levels (above 30 ppm as average) for a longer period of time (more than 10–26 years). The measurements of TEOAE did not exhibit significant results related to exposure.


This study found, that chronic and intensive styrene exposure increases the hearing thresholds. At levels of about 30–50 ppm as an average inhaled styrene per work day over a period of about 15 years with higher exposure levels above 50 ppm in the past, an elevated risk for impaired hearing thresholds can be expected. The formerly published results on ototoxic effects below 20 ppm could not be confirmed. With few exceptions (at frequencies of 1,000 and 1,500 Hz) no dose–response relationship between threshold and exposure data was found. Improvements of hearing thresholds during work- and exposure-free period are possible.


Styrene Boat building Laminators Hearing threshold Otoacoustic emissions Recovery 



The authors gratefully acknowledge the workers for their participation and the management for their support, the assistance of Gudula Christ, Jörg Geier, Andreas Ihrig, Stefan Knohl, Ismail Arslan, Steffen Sandermann, Holger Zimmer, Heidi Ludwig and Ralf Debernitz in the examinations, air and biomonitoring and first documentation of data. They also wish to thank Sylvana Müller for independent quality assurance of the study, Heinz-Peter Gelbke and George Cruzan as well as Abby Lee and Robert Sielken as consultants of the project for study advice. For critical revision of the manuscript we want to thank Sebastian Hoth. The project has been partly sponsored by the Styrenics Steering Committee (SSC), Belgium and the Styrene Information and Research Center (SIRC), USA. The authors thank all collaborators, consultants and sponsoring associations for their valuable support during different periods of the project.


  1. Calabrese G, Martini A, Sessa G, Cellini M, Bartolucci GB, Marcuzzo G et al (1996) Otoneurological study in workers exposed to styrene in the fiberglass industry. Int Arch Occup Environ Health 68:219–223PubMedGoogle Scholar
  2. Campo P, Lataye R, Loquet G, Bonnet P (2001) Styrene-induced hearing loss: a membrane insult. Hear Res 154:170–180. doi: 10.1016/S0378-5955(01)00218-0 PubMedCrossRefGoogle Scholar
  3. Campo P, Loquet G, Blache`re V, Roure M (1999) Toluene and styrene intoxication route in the rat cochlea. Neurotoxicol Teratol 21:427–434. doi: 10.1016/S0892-0362(99)00010-0 PubMedCrossRefGoogle Scholar
  4. Cary R, Clarke S, Delic J (1997) Effects of combined exposure to noise and toxic substances—critical review of the literature. Ann Occup Hyg 41(4):455–465PubMedGoogle Scholar
  5. Chen GD, Chi LH, Kostyniak PJ, Henderson D (2007) Styrene induced alterations in biomarkers of exposure and effects in the cochlea: mechanisms of hearing loss. Toxicol Sci 98(1):167–177. doi: 10.1093/toxsci/kfm078 PubMedCrossRefGoogle Scholar
  6. Dalton P, Lees PSJ, Gould M, Dilks D, Stefaniak A, Bader M et al (2007) Evaluation of long-term occupational exposure to styrene vapour on olfactory function. Chem Senses 32:739–747. doi: 10.1093/chemse/bjm041 PubMedCrossRefGoogle Scholar
  7. DFG Deutsche Forschungsgemeinschaft (1985) Analyses of hazardous substances in biological in biological materials. Methods for biological monitoring. In: Angerer J, Schaller KH (eds) Aromatic carboxylic acids, vol 2. Wiley-VCH, Weinheim, pp 47–66Google Scholar
  8. DFG Deutsche Forschungsgemeinschaft (2007a) List of MAK and BAT values. Commission for the investigation of health hazards in the work area: Report No. 43, Wiley VCH, WeinheimGoogle Scholar
  9. DFG Deutsche Forschungsgemeinschaft (2007b) Analytische Methoden zur Prüfung gesundheitsschädlicher Arbeitsstoffe. Luftanalysen (Styrol). Wiley-VCH, WeinheimGoogle Scholar
  10. De Rosa E, Cellini M, Sessa G, Scapellato ML, Marcuzzo G, Bartolucci GB (1996) The importance of sampling time and coexposure to acetone and biological monitoring of styrene-exposed workers. Appl Occup Environ Hyg 11:471–475Google Scholar
  11. Dirckx JJJ, Daemers K, Somers T, Offeciers FE, Govaerts PJ (1996) Numerical assessment of TEOAE screening results: currently used criteria and their effect on TEOAE prevalence figures. Acta Laryngol Stockh 116:672–679. doi: 10.3109/00016489609137906 CrossRefGoogle Scholar
  12. Fechter LD (2005) Oxidative stress: a potential basis for potentiation of noise-induced hearing loss. Environ Toxicol Pharmacol 3:543–546. doi: 10.1016/j.etap.2004.12.017 CrossRefGoogle Scholar
  13. Ferguson MA, Smith PA, Davis AC, Lutman ME (2000) Transient-evoked otoacoustic emissions in a representative population sample aged to 18 to 25 years. Audiology 39:125–134PubMedGoogle Scholar
  14. Fuente A, McPherson B (2006) Organic solvents and hearing loss: the challenge for audiology. Int J Audiol 45:367–381. doi: 10.1080/14992020600753205 PubMedCrossRefGoogle Scholar
  15. Gagnaire F, Langlais C (2005) Relative ototoxicity of 21 aromatic solvents. Arch Toxicol 79:346–354. doi: 10.1007/s00204-004-0636-2 PubMedCrossRefGoogle Scholar
  16. Golka K, Wiese A (2004) Carbohydrate-deficient transferrin (CDT)—a biomarker for long-term alcohol consumption. J Toxicol Environ Health 7:319–337. doi: 10.1080/10937400490432400 CrossRefGoogle Scholar
  17. Greim H (ed) (1996). Occupational toxicants. critical data evaluation for MAK values and classification of carcinogens. Acetone, vol 7. Wiley-VCH, Weinheim, pp 1–8Google Scholar
  18. Guillemin MP, Berode M (1988) Biological monitoring of styrene: a review. Am Ind Hyg Assoc 49:497–505Google Scholar
  19. Hoffmann J, Ihrig A, Hoth S, Triebig G (2006) Field study to explore possible effects of styrene on auditory function in exposed workers. Ind Health 44:283–286. doi: 10.2486/indhealth.44.283 PubMedCrossRefGoogle Scholar
  20. Hoffmann E (1997) Hörfähigkeit und Hörschäden junger Erwachsener. Median VerlagGoogle Scholar
  21. Hoth S (1996) Der Einfluß von Innenohrhörstörungen auf verzögerte otoakustische Emissionen (TEOAE) und Distorsionsprodukte (DPOAE). Laryngorhinootologie 75:709–718PubMedCrossRefGoogle Scholar
  22. Ikeda M, Koizumi A, Miyasaka M, Watanabe T (1982) Styrene exposure and biologic monitoring in FRP boat production. Int Arch Occup Environ Health 49:325–339. doi: 10.1007/BF00377941 PubMedCrossRefGoogle Scholar
  23. Jarvelin MR, Maki-Torkko E, Sorri MJ, Rantakallio PT (1997) Effect of hearing impairment on educational outcomes and employment up to the age of 25 years in northern Finland. Br J Audiol 31:165–175PubMedGoogle Scholar
  24. Jensen B, Mürer JL, Olsen E, Christensen JM (1994) Assessment of long-term styrene exposure: a comparative study of a logbook method and biological monitoring. Int Arch Occup Environ Health 66:399–405. doi: 10.1007/BF00383147 CrossRefGoogle Scholar
  25. Johnson A-C (2006) Styrene exposure—hearing loss relationship. Abstracts of the International Symposium “Health effects of exposure to noise and chemicals”, Lodz, Poland, November 15–16th, 2006, Nofer Institute of Occupational Health. To be published in International Journal of Occupational Medicine and Environmental Health (in press) “Styrene Exposure - Hearing Loss relationship. Review of Human studiesGoogle Scholar
  26. Johnson AC, Morata TC, Lindblad AC, Nylen PR, Svenson EB, Krieg E et al (2006) Audiological findings in workers exposed to styrene alone or in concert with noise. Noise Health 8:45–57PubMedCrossRefGoogle Scholar
  27. Lataye R, Campo P, Loquet G, Morel G (2005) Combined effects of noise and styrene on hearing: comparison between active and sedentary rats. Noise Health 27:49–64Google Scholar
  28. Lawton BW, Hoffmann J, Triebig G (2006) The ototoxicity of styrene: a review of occupational investigations. Int Arch Occup Environ Health 79:93–102. doi: 10.1007/s00420-005-0030-2 PubMedCrossRefGoogle Scholar
  29. Leitel T, Hoffmann J, Hoth S, Triebig G (2007) Exposure study to examine effects of ototoxicity of styrene in workplace concentrations and in combination with noise. Arbeitsmed Sozialmed Umweltmed 42:274–281Google Scholar
  30. Loquet G, Campo P, Lataye R (1999) Comparison of toluene-induced and styrene-induced hearing losses. Neurotoxicol Teratol 21:689–697. doi: 10.1016/S0892-0362(99)00030-6 PubMedCrossRefGoogle Scholar
  31. Makitie A, Pirvola U, Pyykko I, Sakakibara H, Riihimaki V, Ylikoski J (2002) Functional and morphological effects of styrene on the auditory system of the rat. Arch Toxicol 76:40–47. doi: 10.1007/s00204-001-0316-4 PubMedCrossRefGoogle Scholar
  32. Mizunuma K, Yasugi T, Kawai T, Horiguchi S, Ikeda M (1993) Exposure-excretion of styrene and acetone in factory workers: a comparison of a lipophilic solvent and a hydrophilic solvent. Arch Environ Contam Toxicol 25:129–133. doi: 10.1007/BF00230723 PubMedCrossRefGoogle Scholar
  33. Möller C, Ödkvist L, Larsby B, Tham R, Ledin T, Bergholtz L (1990) Otoneurological findings in workers exposed to styrene. Scand J Work Environ Health 16:189–194PubMedGoogle Scholar
  34. Morata TC, Campo P (2001) Auditory function after single or combined exposure to styrene: a review. In: Henderson D, Prasher D, Kopke R, Salvi R, Hamernik R (eds) Noise-induced hearing loss: basic mechanisms, prevention and control. Noise Research Network Publications, London, pp 293–304Google Scholar
  35. Morata TC, Johnson A, Nylen P, Svensson EB, Cheng J, Krieg EF et al (2002) Audiometric findings in workers exposed to low levels of styrene and noise. J Occup Environ Med 44:806–814. doi: 10.1097/00043764-200209000-00002 PubMedCrossRefGoogle Scholar
  36. Morata TC, Little MB (2002) Protocol: suggested guidelines for studying the combined effects of occupational exposure to noise and chemicals on hearing. Noise Health 14:73–87Google Scholar
  37. Morioka I, Kuroda M, Miyashita K, Takeda S (1999) Evaluation of organic solvent ototoxicity by the upper limit of hearing. Arch Environ Health 54:341–346PubMedCrossRefGoogle Scholar
  38. Muijser H, Hoogendijk EMG, Hooisma J (1988) The effects of occupational exposure to styrene on high-frequency hearing thresholds. Toxicology 49:331–340. doi: 10.1016/0300-483X(88)90016-9 PubMedCrossRefGoogle Scholar
  39. Ong CN, Shi CY, Chia SE, Chua SC, Ong HY, Lee BL et al (1994) Biological monitoring of exposure to low concentrations of styrene. Am J Ind Med 25:719–730. doi: 10.1002/ajim.4700250511 PubMedCrossRefGoogle Scholar
  40. Plinkert PK, Hemmert W, Wagner W, Just K, Zenner HP (1999) Monitoring noise susceptibility:sensitivity of otoacoustic emissions and subjective audiometry. Br Audiol 33:367–382Google Scholar
  41. Pouyatos B, Campo P, Lataye R (2002) Use of DPOAEs for assessing hearing loss caused by styrene in the rat. Hear Res 165:156–164. doi: 10.1016/S0378-5955(02)00298-8 PubMedCrossRefGoogle Scholar
  42. Robinette MS, Glattke TJ (eds) (2002) Otoacustic emissions clinical applications. Thieme, StuttgartGoogle Scholar
  43. Sass-Kortsak A, Corey PN, Robertson J (1995) An investigation of the association between exposure to styrene and hearing loss. Ann Epidemiol 5:8–14. doi: 10.1016/1047-2797(94)00036-S CrossRefGoogle Scholar
  44. Schäper M, Demes P, Zupanic M, Blaszkewicz M, Seeber A (2003) Occupational toluene exposure and auditory function: results from a follow-up study. Ann Occup Hyg 47:493–502. doi: 10.1093/annhyg/meg058 PubMedCrossRefGoogle Scholar
  45. Seitz G, Stickel F, Fiehn W, Werle E, Simanowski UA, Seitz HK (1995) Kohlenhydrat-defizientes Transferrin. Ein neuer, hochspezifischer Marker für chronischen Alkoholkonsum. Dtsch Med Wochensch Sect 120:391–395CrossRefGoogle Scholar
  46. Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymszak W, Kotylo P, Fiszer M, Dudarewicz A et al (2003) Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. J Occup Environ Med 45:15–24. doi: 10.1097/00043764-200301000-00008 PubMedCrossRefGoogle Scholar
  47. Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, Kotylo P, Fiszer M, Wesolowski W et al (2005) Exacerbation of noise-induced hearing loss by co-exposure to workplace chemicals. Environ Toxicol Pharmacol 19:547–554. doi: 10.1016/j.etap.2004.12.018 CrossRefGoogle Scholar
  48. Sliwinska-Kowalska M, Prasher D, Alves Rodrigues C, Zamyslowska-Szmytke E, Campo P, Henderson D et al (2007) Ototoxicity of organic solvents—from scientific evidence to health policy. Int J Occup Med Environ Health 20:215–222. doi: 10.2478/v10001-007-0021-5 PubMedCrossRefGoogle Scholar
  49. Tay T, Wang JJ, Kifley A, Lindley R, Newall P, Mitchell P (2006) Sensory and cognitive association in older persons: findings from an older Australian population. Gerontology 52:386–394. doi: 10.1159/000095129 PubMedCrossRefGoogle Scholar
  50. Triebig G, Schaller KH, Valentin H (1985) Investigations of neurotoxicity of chemical substances at the workplace. VII Longitudinal study with determination of nerve conduction velocities in persons occupationally exposed to styrene. Int Arch Occup Environ Health 56:239–247. doi: 10.1007/BF00396601 PubMedCrossRefGoogle Scholar
  51. Welch D, Dawes PJ (2007) Variation in the normal hearing threshold predicts childhood IQ, linguistic, and behavioral outcomes. Pediatr Res 2007(Apr):5. Epub ahead of printGoogle Scholar
  52. Wolf K, Bienfait HG, Brohmann P, Brucksch E, Stanetzek I, Teuffel-Schilling C et al (2000) Styrolbelastung von Beschäftigten in der Polyesterharz verarbeitenden Industrie. Arbeitsmed Sozialmed Umweltmed 35:312–315Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gerhard Triebig
    • 1
  • Thomas Bruckner
    • 2
  • Andreas Seeber
    • 3
  1. 1.Institute and Outpatient Clinic for Occupational and Social MedicineUniversity Hospital of HeidelbergHeidelbergGermany
  2. 2.Department of Biometry in MedicineUniversity of HeidelbergHeidelbergGermany
  3. 3.Institute of Occupational PhysiologyUniversity of DortmundDortmundGermany

Personalised recommendations