Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes

Abstract

Objective

Universal Mobile Telecommunication System (UMTS) was recently introduced as the third generation mobile communication standard in Europe. This was done without any information on biological effects and genotoxic properties of these particular high-frequency electromagnetic fields. This is discomforting, because genotoxic effects of the second generation standard Global System for Mobile Communication have been reported after exposure of human cells in vitro.

Methods

Human cultured fibroblasts of three different donors and three different short-term human lymphocyte cultures were exposed to 1,950 MHz UMTS below the specific absorption rate (SAR) safety limit of 2 W/kg. The alkaline comet assay and the micronucleus assay were used to ascertain dose and time-dependent genotoxic effects. Five hundred cells per slide were visually evaluated in the comet assay and comet tail factor (CTF) was calculated. In the micronucleus assay 1,000 binucleated cells were evaluated per assay. The origin of the micronuclei was determined by fluorescence labeled anticentromere antibodies. All evaluations were performed under blinded conditions.

Results

UMTS exposure increased the CTF and induced centromere-negative micronuclei (MN) in human cultured fibroblasts in a dose and time-dependent way. Incubation for 24 h at a SAR of 0.05 W/kg generated a statistically significant rise in both CTF and MN (P = 0.02). At a SAR of 0.1 W/kg the CTF was significantly increased after 8 h of incubation (P = 0.02), the number of MN after 12 h (P = 0.02). No UMTS effect was obtained with lymphocytes, either unstimulated or stimulated with Phytohemagglutinin.

Conclusion

UMTS exposure may cause genetic alterations in some but not in all human cells in vitro.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci 70:2281–2285

    PubMed  Article  CAS  Google Scholar 

  2. Anderson D, Yu T, Phillips B, Schmezer P (1994) The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the Comet assay. Mutat Res 307:261–271

    PubMed  CAS  Google Scholar 

  3. Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schönborn F, Kuster N, Wobus A (2004) High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics 25:296–307

    PubMed  Article  CAS  Google Scholar 

  4. Diem E, Ivancsits S, Rüdiger HW (2002) Basal levels of DNA strand breaks in human leukocytes determined by comet assay. J Toxicol Environ Health A 65:641–648

    PubMed  Article  CAS  Google Scholar 

  5. Diem E, Schwarz C, Adlkofer F, Jahn O, Rüdiger HW (2005) Non-thermal DNA breakage by mobile phone radiation (1800 MHz) in human fibroblasts and transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res 583:178–183

    PubMed  CAS  Google Scholar 

  6. Eastmond DA, Tucker JD (1989) Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an antikinetochore antibody. Environ Mol Mutagen 13:34–43

    PubMed  Article  CAS  Google Scholar 

  7. Farooqi Z, Darroudi F, Natarajan AT (1993) Use of fluorescence in situ hybridization for the detection of aneugens in cytokinesis-blocked mouse splenocytes. Mutagenesis 8:329–334

    PubMed  Article  CAS  Google Scholar 

  8. Fenech M (1993) The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res 285:35–44

    PubMed  CAS  Google Scholar 

  9. Fenech M, Morley A (1985) Measurement of micronuclei in lymphocytes. Mutat Res 203:339–345

    Google Scholar 

  10. Hardell LO; Carlberg M, Hansson Mild K (2006) Pooled analysis of two case–control studies on use of cellular and cordless telephones and the risk for malignant brain tumours diagnosed in 1997–2003. Int Arch Occup Environ Health 79:630–639

    Article  Google Scholar 

  11. Hardell LO, Carlberg M, Söderqvist F, Mild KH, Morgan LL (2007) Long-term use of cellular phones and brain tumours—increased risk associated with use >10 years. Occup Environ Med 64:626–632

    PubMed  Article  Google Scholar 

  12. Höytö A, Juutilainen J, Naarala J (2007) Ornitine decarboxylase activity is affected in primary astrocytes but not in secondary cell lines exposed to 872 MHz RF radiation. Int J Radiat Biol 83:367–374

    PubMed  Article  CAS  Google Scholar 

  13. ICNIRP (International Commission for Non-Ionizing Radiation Protection), Standing Committee on Epidemiology: Ahlbom A, Green A, Kheifets L, Savitz D, Swerdlow A (2004) Epidemiology of health effects of radiofrequency exposure. Environ Health Perspect 112:1741–1754

    Google Scholar 

  14. IEGMP (2000) Mobil phones and health. Report of the independent expert group on mobile phones, Chairman: Sir William Stewart, National Radiation Protection Board, London

  15. IEGEMF (2007) Recent research on EMF and health risks. Fourth annual report from SSI’s independent expert group on electromagnetic fields. Statens Stralskyddsinstitut, Stockholm

  16. Ivancsits S, Diem E, Rüdiger HW, Jahn O (2002a) Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res 519:1–13

    PubMed  CAS  Google Scholar 

  17. Ivancsits S, Pilger A, Diem E, Schaffer A, Rüdiger HW (2002b) Vanadate induces DNA strand breaks in cultured human fibroblasts at doses relevant to occupational exposure. Mutat Res 519:25–35

    PubMed  CAS  Google Scholar 

  18. Ivancsits S, Diem E, Jahn O, Rüdiger HW (2003) Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health 76:431–436

    PubMed  Article  CAS  Google Scholar 

  19. Ivancsits S, Pilger A, Diem E, Jahn O, Rüdiger HW (2005) Cell type specific genotoxic effects of intermittent extremely low frequency electromagnetic fields. Mutat Res 583:184–188

    PubMed  CAS  Google Scholar 

  20. Krewski D, Glickman BW, Habash RWY, Habbick B, Lotz WG, Mandeville R, Prato FS, Salem T, Weaver DF (2007) Recent advances in research on radiofrequency fields and health: 2001–2003. J Toxicol Environ Health B 10:287–318

    Article  CAS  Google Scholar 

  21. Kundi M, Mild K, Hardell LO, Mattsson MO (2004) Mobile telephones and cancer—a review of epidemiological evidence. J Toxicol Environ Health B Crit Rev 7:351–384

    PubMed  Article  CAS  Google Scholar 

  22. Lai H, Singh N (1996) Single- and double strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol 69:513–521

    PubMed  Article  CAS  Google Scholar 

  23. Lai H, Singh N (2004) Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 112:687–694

    PubMed  CAS  Article  Google Scholar 

  24. Lahkola A, Auvinen A, Raitanen J, Shoemaker MJ, Christensen HC, Feychting M, Johansen C, Klaeboe L, Lönn S, Swerdlow AJ, Tynes T, Salminen T (2007) Mobile phone use and risk of glioma in 5 north European countries. Int J Cancer 120(8):1769–1775

    PubMed  Article  CAS  Google Scholar 

  25. Lasne C, Gu Z, Venegas W, Chouroulinkov I (1984) The in vitro micronucleus assay for detection of cytogenetic effects induced by mutagen-carcinogens: comparison with the in vitro sister-chromatid exchange assay. Mutat Res 130:273–282

    PubMed  CAS  Google Scholar 

  26. Lee S, Johnson D, Dunbar K, Dong H, Ge X, Kim Y, Wing C, Jayathilaka N, Emmanuel N, Zhou C, Gerber H, Tseng C, Wang S (2005) 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett 579:4829–4836

    PubMed  Article  CAS  Google Scholar 

  27. Leszczynski D, Joenväärä S, Reivinen J, Kuokka R (2002) Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation 70:120–129

    PubMed  Article  CAS  Google Scholar 

  28. Meltz M (2003) Radiofrequency exposure and mammalian cell toxicity, genotoxicity, and transformation. Bioelectromagnetics 24:196–213

    Article  Google Scholar 

  29. Ndoumbè Mbonjo Mbonjo H, Streckert J, Bitz A, Hansen V, Glasmachers A, Gencol S, Rozic D (2004) Generic UMTS test signal for RF biolelectromagnetic studies. Bioelectromagnetics 25:415–425

    Article  Google Scholar 

  30. Olive PL, Banath JP (1995) Sizing highly fragmented DNA in individual apoptotic cells using the comet assay and a DNA crosslinking agent. Exp Cell Res 221:19–26

    PubMed  Article  CAS  Google Scholar 

  31. Östling O, Johanson K (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Com 123:291–298

    PubMed  Article  Google Scholar 

  32. Pancini S, Ruggiero M, Sardi I, Aterini S, Gulisano F, Gulisano M (2002) Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts. Oncol Res 13:19–24

    Google Scholar 

  33. Paulray R, Behari J (2006) Single strand DNA breaks inn rat brain cells exposed to microwave radiation. Mutat Res 596:76–80

    Google Scholar 

  34. REFLEX Final Report (2004) European Union Project QLK4-CT-1999-01574, Risk evaluation of potential environmental hazards from low frequency electromagnetic field exposure using sensitive in vitro methods. Final Report. http://www.verum-foundation.de

  35. Repacholi M (1998) Low-Level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics 19:1–19

    PubMed  Article  CAS  Google Scholar 

  36. Schoemaker MJ, Swerdlow AJ, Ahlbom A, Auvinen A, Blaasaas KG, Cardis E, Christensen HC, Feychting M, Hepworth SJ, Johansen C, Klaeboe L, Lonn S, McKinney PA, Muir K, Raitanen J, Salminen T, Thomsen J, Tynes T (2005) Mobile phone use and risk of acoustic neuroma: results of the interphone case–control study in five North European countries. Br J Cancer 93:842–848

    PubMed  Article  CAS  Google Scholar 

  37. Schonborn F, Pokovic K, Burkhard M, Kuster N (2001) Basis for optimization of in vitro exposure apparatus for health hazard evaluations of mobile communications. Bioelectromagnetics 22:547–559

    PubMed  Article  CAS  Google Scholar 

  38. Schuderer J (2005) EMF risk assessment: “in vitro” research and sleep studies. In: Series in microelectronics. Hartung-Gorre Verlag, Konstanz

  39. Schuderer J, Kuster N (2003) Effect of the meniscus at the solid/liquid interface of the SAR distribution in Petri dishes and flasks. Bioelectromagnetics 24:103–108

    PubMed  Article  Google Scholar 

  40. Schütz J, Böhler E, Berg G, Schlehofer B, Hettinger I, Schlaefer K, Wahrendorf J, Kunna-Grass K, Blettner M (2006) Cellular phones, cordless phones, and the risk of glioma and meningioma (Interphone Study Group, Germany) Am J Epidemiol 163(6):512–520

    Article  Google Scholar 

  41. Singh N, Lai H (1998) 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutat Res 400:313–320

    PubMed  CAS  Google Scholar 

  42. Singh N, McCoy M, Tice R, Schneider E (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    PubMed  Article  CAS  Google Scholar 

  43. Singh N, Tice R, Stephens R, Schneider E (1991) A microgel electrophoresis technique for direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscope slides. Mutat Res 252:289–296

    PubMed  CAS  Google Scholar 

  44. Speit G, Schütz P, Hoffmann H (2007) Genotoxic effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in cultured mammalian cells are not independently reproducible. Mutat Res 626:42–47

    PubMed  CAS  Google Scholar 

  45. Vijayalaxmi, Obe G (2004) Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation. Radiat Res 162:481–496

  46. Whitehead TD, Moros EG, Brownstein BH, Roto Roti JL (2006) Gene expression does not change significantly in C3H 10T(1/2) cells after exposure to 847.74 CDMA or 835.62 FDMA radiofrequency radiation. Radiat Res 165:626–635

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Austrian Workers Compensation Board, Vienna, Austria, the Verum Foundation, Munich, Germany, and the Austrian Science Fund FWF (project number P18984-B09). The authors gratefully acknowledge the value assistance of Marietta Weninger and Petra Hartbauer and thank Dr Elisabeth Ponocny-Seliger for helpful statistical advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hugo W. Rüdiger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schwarz, C., Kratochvil, E., Pilger, A. et al. Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes. Int Arch Occup Environ Health 81, 755–767 (2008). https://doi.org/10.1007/s00420-008-0305-5

Download citation

Keywords

  • Comet assay
  • Micronucleus assay
  • Genotoxic effect
  • Radiofrequency electromagnetic fields