Skip to main content
Log in

Local effects in the respiratory tract: relevance of subjectively measured irritation for setting occupational exposure limits

  • Review
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Objectives: Chemosensory effects of stimulation by a chemical can either be irritating (trigeminal stimulation) or odorous (olfactory stimulation) or both. For odorous irritants, a clear-cut distinction between odour and irritation is difficult to make. The differences in the lowest concentration found to be irritating to the respiratory tract in humans when compared to experimental animals has brought much debate in the process of setting occupational exposure limits (OELs) for such chemicals. In this paper it will be discussed as to how far subjectively measured sensory irritation threshold levels can be used to establish OELs. Methods: Data on respiratory irritation of four odorous irritants were retrieved from public literature and discussed, viz. acetone, formaldehyde, furfural and sulphur dioxide. Results: Objective measures of irritation yielded results that differed from subjective evaluations. Important factors modulating the reported levels of irritation and health symptoms include the perception of odour intensity, exposure history and the individual’s bias to report irritation on the basis of his/her prejudice or knowledge of the compound. Conclusions: Subjective measures alone are less appropriate for establishing sensory irritation thresholds of odorous irritants and are, therefore, less suitable to establish OELs without supporting evidence. Objectively measured irritation in humans, the Alarie assay (an experimental animal test assessing the concentration that results in a 50% reduction of the breathing frequency) and repeated exposure studies in animals may be of help to study objective irritation. If subjective measurements are used to study sensory irritation, the study design should at least include: measurement of both incidence and severity determined at several concentrations, an appropriate (0 ppm) control condition, preferably a non-irritant odorant control exposure, validated questionnaires and correct concentration measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. SCOEL uses the following categories: (1) no effects observed; no awareness of exposure; (2) very slight effects, awareness of exposure; (3) slight irritant effects or nuisance (e.g. smell); easily tolerable; (4) significant irritation/nuisance, overt health effects; barely tolerable; and (5) serious health effects (e.g. pulmonary oedema); intolerable. Effects may be considered to satisfy the criterion for nuisance at somewhere between (2) and (3) on the above continuum. SCOEL considers symptoms such as eye and/or nasopharyngeal discomfort, headache, and decreased performance to be adverse effects on health and well being. For the purposes of setting an OEL, SCOEL suggests that no distinction be made between irritation or nuisance and related somatic effects such as headache, although the SCOEL will attempt to distinguish between nuisance and mere perception or awareness of exposure.

References

  • ACGIH (1997) Documentation of the threshold limit values and biological exposure indices, vols I–III, 6th edn. American Conference of Governmental Industrial Hygienists, Cincinnati, OH

  • ACGIH (2001) Acetone, formaldehyde, furfural and sulfur dioxide. Documentation of the threshold limit values and biological exposure indices. American Conference of Governmental Industrial Hygienists, Cincinnati, OH

  • ACGIH (2003) TLVs and BEIs based on the documentation of the threshold limit values (TLVs) for chemical substances and physical agents and biological exposure Indices. American Conference of Governmental Industrial Hygienists, Cincinnati, OH

  • Alarie Y (1973) Sensory irritation of the upper airways by airborne chemicals. Toxicol Appl Pharmacol 24:279–297

    PubMed  CAS  Google Scholar 

  • Alarie Y (1981) Dose–response analysis in animal studies: prediction of human responses. Environ Heath Perspect 42:9–13

    CAS  Google Scholar 

  • Alarie Y, Wakisaki I, Oka S (1973) Sensory irritation by sulfur dioxide and chlorobenzylidene malonitrile. Environ Physiol Biochem 3:53

    CAS  Google Scholar 

  • Alarie YC, Krumm AA, Busey WM, Urich CE, Dantz RJ (1975) Long-term exposure to sulphur dioxide, sulfuric acid mists, fly ash, and their mixtures Results of studies on monkeys and guinea pigs. Arch Environ Health 30:254–262

    PubMed  CAS  Google Scholar 

  • Amoore JE, Hautala E (1983) Odor as an aid to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J Appl Toxicol 3:272–290

    PubMed  CAS  Google Scholar 

  • Andersen I, Molhave I (1983) Controlled human studies with formaldehyde. In: Gibson JE (ed) Formaldehyde toxicity. Hemisphere, Washington, DC, pp 154–165

    Google Scholar 

  • Andersen I, Lundqvist GR, Jensen PL, Procter DF (1974) Human response to controlled levels of sulfur dioxide. Arch Environ Health 28:31–39

    PubMed  CAS  Google Scholar 

  • Apol AG, Lucas JB (1975) Health hazard evaluation. Pacific Grinding WheelCo., Marysville WA, HHE no. 73-18-171 NTIS Pub. No. 246–444, National Technical Information Service, Springfield VA, USA

  • Appelman LM, Woutersen RA, Zwart A, Falke HE, Feron VJ (1988) One-year inhalation toxicity study of formaldehyde in male rats with damaged or undamaged nasal mucosa. J Appl Toxicol 8:85–90

    PubMed  CAS  Google Scholar 

  • Artho A, Koch R (1973) Charactérisation olfactive des composés de la fumée de cigarettes. A du Tabac, Sect. 1-11-Paris-Seita, pp 37–43

  • Arts JHE, Mojet J, van Gemert LJ, Emmen HH, Lammers JHCM, Marquart J, Woutersen RA, Feron VJ (2002) An analysis of human responses to the irritancy of acetone vapors. Crit Rev Toxicol 32:43–66

    PubMed  CAS  Google Scholar 

  • Arts JHE, Muijser H, Appel MJ, Kuper CF, Bessems JGM, Woutersen RA (2004) Subacute (28-day) toxicity of furfural in Fischer 344 rats: a comparison of the oral and inhalation route. Food Chem Toxicol 42:1389–1399

    PubMed  CAS  Google Scholar 

  • Bedi JF, Horvath SM (1989) Inhalation route effects on exposure to 2.0 ppm sulphur dioxide in normal subjects. J Air Pollut Control Assoc 39:1448–1452

    CAS  Google Scholar 

  • Bedi JF, Folinsbee LJ, Horvath SM (1984) Pulmonary function effects of 1.0 and 2.0 ppm sulphur dioxide exposure in active young male non-smokers. J Air Pollut Control Assoc 34:1117–1121

    PubMed  CAS  Google Scholar 

  • Bender JR, Mullin LS, Graepel GJ, Wilson WE (1983) Eye irritation response of humans to formaldehyde. Am Ind Hyg Assoc J 44:463–465

    PubMed  CAS  Google Scholar 

  • Berglund B, Olsson MJ (1993) Odor-intensity interaction in binary and ternary mixtures. Percept Psychophys 53:475–482

    PubMed  CAS  Google Scholar 

  • Berglund B, Berglund U, Ekman G, Engen T (1971) Individual psychophysical functions for 28 odorants. Percept Psychophys 9:379–384

    Google Scholar 

  • Bethel RA, Sheppard D, Geffroy B, Tann E, Nadel JA, Boushey HA (1985) Effect of 0.25 ppm sulphur dioxide on airway resistance in freely breathing, heavily exercising, asthmatic subjects. Am Rev Respir Dis 131:659–661

    PubMed  CAS  Google Scholar 

  • Blondheim SH, Reznik L (1971) The threshold for the smell of acetone and its relationship to the ability to taste phenylthiocarbamate. Experienta 27:1282–1283

    CAS  Google Scholar 

  • Bos PJM, Zwart A, Reuzel PGJ, Bragt PC (1991) Evaluation of the sensory irritation test for the assessment of occupational health risk. Crit Rev Toxicol 21:423–450

    PubMed  CAS  Google Scholar 

  • Bruckner JV, Peterson RJ (1981) Evaluation of toluene and acetone inhalation abuse: II Model development and toxicology. Toxicol Appl Pharmacol 61:302–312

    PubMed  CAS  Google Scholar 

  • von Burg R (1996) Toxicology update. Sulfur dioxide. J Appl Toxicol 16:365–371

    Google Scholar 

  • Cain WS, Cometto-Muňiz JE (1995) Irritation and odor as indicators of indoor air pollution. Occup Med 10:133–145

    PubMed  CAS  Google Scholar 

  • Cain WS, Gent J, Catalanotto FA, Goodspeed RB (1983) Clinical evaluation of olfaction. Am J Otolaryngol 4:252–256

    PubMed  CAS  Google Scholar 

  • Casanova M, Morgan KT, Gross EA, Moss OR, Heck HA (1994) DNA-protein cross-links and cell replications at specific sites in the nose of F344 rats exposed subchronically to formaldehyde. Fundam Appl Toxicol 23:525–536

    PubMed  CAS  Google Scholar 

  • Cassee FR, Feron VJ (1994) Biochemical and histopathological changes in nasal epithelium of rats after 3-day intermittent exposure to formaldehyde and ozone alone or in combination. Toxicol Lett 72:257–268

    PubMed  CAS  Google Scholar 

  • Cassse FR, Groten JP, Feron VJ (1996) Changes in the nasal epithelium of rats exposed by inhalation to mixtures of formaldehyde, acetaldehyde and acrolein. Fundam Appl Toxicol 29:208–218

    Google Scholar 

  • Cometto-Muňiz JE, Cain WS (1990) Thresholds for odor and nasal pungency. Physiol Behav 48:719–725

    PubMed  Google Scholar 

  • Cometto-Muňiz JE, Cain WS (1991) Influence of airborne contaminants on olfaction and the common chemical sense. In: Getschell TV, et al (eds) Smell and taste in health and disease. Raven Press, New York, NY, pp 765–785

    Google Scholar 

  • Cometto-Muňiz JE, Cain WS (1993) Efficacy of volatile organic compounds in evoking nasal pungency and odor. Arch Environ Health 48:309–314

    Article  PubMed  Google Scholar 

  • Cometto-Muňiz JE, Cain WS (1995) Relative sensitivity of the ocular trigeminal, nasal trigeminal and olfactory systems to airborne chemicals. Chem Senses 20:191–198

    PubMed  Google Scholar 

  • Cometto-Muňiz JE, Cain WS (1997) Agonistic sensory effects of airborne chemical in mixtures: odor, nasal pungency, and eye irritation. Percept Psychophys 59:665–674

    PubMed  Google Scholar 

  • Dalton P (1996) Odor perception and beliefs about risk. Chem Senses 21:447–458

    PubMed  CAS  Google Scholar 

  • Dalton P (1999) Cognitive influences on health symptoms from acute chemical exposure. Health Psychol 18: 579–590

    PubMed  CAS  Google Scholar 

  • Dalton P (2001a) Evaluating the human response to sensory irritation: implications for setting occupational exposure limits. AIHAJ 62:723–729

    PubMed  CAS  Google Scholar 

  • Dalton P (2001b) Psychophysical methods in the study of olfaction and respiratory tract irritation. AIHAJ 62:705–710

    PubMed  CAS  Google Scholar 

  • Dalton P (2002) Odor, irritation and perception of health risk. Int Arch Occup Environ Health 75:283–290

    PubMed  CAS  Google Scholar 

  • Dalton P (2003) Upper airway irritation, odor perception and health risk due to airborne chemicals. Toxicol Lett 140–141:239–248

    PubMed  Google Scholar 

  • Dalton P, Wysocki CJ (1996) The nature and duration of adaptation following long-term exposure to odors. Percept Psychophys 58:781–792

    PubMed  CAS  Google Scholar 

  • Dalton P, Wysocki CJ, Brody MJ, Lawley HJ (1997a) The influence of cognitive bias on the perceived odor, irritation and health symptoms from chemical exposure. Int Arch Occup Environ Health 69:407–417

    PubMed  CAS  Google Scholar 

  • Dalton P, Wysocki CJ, Brody MJ, Lawley HJ (1997b) Perceived odor, irritation, and health symptoms following short-term exposure to acetone. Am J Ind Med 31:558–569

    PubMed  CAS  Google Scholar 

  • Day JJ, Less REM, Clark RH, Patter PL (1984) Respiratory responses to formaldehyde and off-gas of urea formaldehyde foam insulation. Can Med Assoc J 131:1061–1065

    PubMed  CAS  Google Scholar 

  • De Ceaurriz JC, Micillino JC, Bonnet P, Guenier JP (1981) Sensory irritation caused by various industrial airborne chemicals. Toxicol Lett 9:137–143

    PubMed  Google Scholar 

  • Devos M, Patte F, Rouault J, Laffort P, van Gemert LJ (1990) Standardized human olfactory tresholds. Oxford RIRL Press, Padova, p 165

    Google Scholar 

  • DFG (1998) Deutsche Forschungsgemeinschaft. Senatskommision zur Prüfung gesundheitsschädlicher Arbeitsstoffe. MAK- und BAT-Werte-Liste. Maximale Arbeitsplatzkonzentrationen und biologische Arbeitsstofftoleranzwerte. Lieferung 27. Weinheim, FRG:VCH Verlagsgeselschaft mbH, Germany

  • DFG (2000) Deutsche Forschungsgemeinschaft. Senatskommision zur Prüfung gesundheitsschädlicher Arbeitsstoffe. MAK- und BAT-Werte-Liste. Maximale Arbeitsplatzkonzentrationen und biologische Arbeitsstofftoleranzwerte. Lieferung 30 and 31. Weinheim, FRG:VCH Verlagsgeselschaft mbH, Germany

  • Dick RB, Setzer JV, Taylor BJ, Shukla R (1989) Neurobehavioural effects of short duration exposures to acetone and methyl ethyl ketone. Br J Ind Med 46:111–121

    PubMed  CAS  Google Scholar 

  • Doty RL (1975) Intranasal trigeminal detection of chemical vapors by humans. Physiol Behav 14:855–859

    PubMed  CAS  Google Scholar 

  • Doty RL, Brugger WE, Jurs PC, Orndorff MA, Snyder PJ, Lowry LD (1978) Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmic and normal humans. Physiol Behav 20:175–185

    PubMed  CAS  Google Scholar 

  • Douglas RB (1975) Human reflex bronchoconstriction as an adjunct to conjuctival sensitivity in defining threshold limit values of irritant gases and vapours. Ph.D. Thesis, London University

  • Fazzalari FA (1978) (ed) Compilation of odor and taste threshold values data ASTM Data Series DS 48A (Committee E-18). American Society for Testing and Materials, Philadelphia, PA, p 153

    Google Scholar 

  • Feldman YG (1960) Data for determining the maximum permissible concentration of acetone in the atmosphere (in Russian). Gig Sanit 25:3–10

    CAS  Google Scholar 

  • Feron VJ, Kruysse A (1978) Effects of exposure to furfural vapour in hamsters simultaneously treated with benzo(a)pyrene or diethylnitrosamine. Toxicology 11:127–144

    PubMed  CAS  Google Scholar 

  • Feron VJ, Kruysse A, Dreef van der Meulen HC (1979) Repeated exposure to furfural vapour: 13-week study in Syrian golden hamsters. Zentralbl Bakteriol Hyg I Abt Orig B 168:442–451

    CAS  Google Scholar 

  • Feron VJ, Bruyntjes JP, Woutersen RA, Immel HR, Appelman LM (1988) Nasal tumors in rats after short-term exposure to a cytotoxic concentration of formaldehyde. Cancer Lett 39:101–111

    PubMed  CAS  Google Scholar 

  • Finelli PF, Mair RG (1991) Disturbances of taste and smell. In: Bradley WG, et al (eds) Neurology in clinical practice. Butterworth and Heinemann, Bosto n, MA, pp 209–216

    Google Scholar 

  • Forrai G, Szabados T, Papp ES, Bánkövi G (1970) Studies on the sense of smell to ketone compounds in a Hungarian population. Humangenetik 8:348–353

    PubMed  CAS  Google Scholar 

  • Frank NR, Amdur MO, Whittenberger JL (1964) A comparison of the acute effects of SO2 administered alone or in combination with NaCl particles on the respiratory mechanics of the healthy adults. Air Water Pollut 8:125–133

    PubMed  CAS  Google Scholar 

  • Frank R (1980) SO2–particulate interactions: recent observations. Am J Ind Med 1:427–434

    PubMed  CAS  Google Scholar 

  • Gagnon P, Mergler D, Lapare S (1994) Olfactory adaptation, threshold shift and recovery at low levels of exposure to methyl isobutyl ketone (MIBK). Neurotoxicology 15:637–642

    PubMed  CAS  Google Scholar 

  • van Gemert LJ (1999) Compilations of odour threshold values in air and water. Boelens Aroma Chemical\Information Services (BACIS), Huizen, The Netherlands, p 91

    Google Scholar 

  • Glowa JR, Dews PB (1987) Behavioral toxicology of volatile organic solvents IV Comparisons of the rate-decreasing effects of acetone, ethyl acetate, methyl ethyl ketone, toluene, and carbon disulfide on schedule-controlled behavior of mice. J Am Coll Toxicol 6:461–469

    CAS  Google Scholar 

  • Goldberg ME, Johnson HE, Pozzani DC, Smyth HF Jr (1964) Effect of repeated inhalation of vapors of industrial solvents on animal behavior I Evaluation of nine solvents vapors on pole-climb performance in rats. Am Ind Hyg Assoc J 25:369–375

    PubMed  CAS  Google Scholar 

  • Gong H Jr, Linn WS, Terrell SL, Anderson KR, Clark KW (2001) Anti-inflammatory and lung function effects of Montelukast in asthmatic volunteers exposed to sulfur dioxide. Chest 119:402–408

    PubMed  CAS  Google Scholar 

  • Green DJ, Sauder LR, Kulle TJ, Bascom R (1987) Acute response to 3.0 ppm formaldehyde in exercising healthy nonsmokers and asthmatics. Am Rev Respir Dis 135:1261–1266

    PubMed  CAS  Google Scholar 

  • Hartung LD, Hammond EG, Miner JR (1971) Identification of carbonyl compounds in a swine-building atmosphere. Livest Waste Management Pollution Abatement Proceedings of the International Symposium, pp 105–106

  • Hirsch JA, Swenson EW, Wanner A (1975) Tracheal mucous transport in beagles after long-term exposure to 1 ppm sulphur dioxide. Arch Environ Health 30:249–253

    PubMed  CAS  Google Scholar 

  • Holness DL, Nethercott JR (1989) Health status of funeral service workers exposed to formaldehyde. Arch Environ Health 44:222–228

    Article  PubMed  CAS  Google Scholar 

  • Hummel T, Barz S, Lötsch J, Roscher S, Kettenmann B, Kobal G (1996) Loss of olfactory function leads to a decrease of trigeminal sensitivity. Chem Senses 21:75–79

    PubMed  CAS  Google Scholar 

  • IARC (2004) IARC monographs on the evaluation of carcinogenic risk to humans. Formaldehyde. International Agency for Research on Cancer, vol. 88 (in preparation) http://www-cie.iarc.fr/htdocs/announcements/vol88/format.html (last updated 7 September 2004)

  • Islam MS, Neuhann HF, Grzegowski E, Oberbarnscheidt J (1992) Bronchomotoric effect of low concentration of sulphur dioxide in young healthy volunteers. Fresenius Environ Bull 1:541–546

    Google Scholar 

  • Islam MS, Oberbarnscheidt J, Schlipköter HW (1994) Non-specific responsiveness to hyperventilation of low doses of sulfur dioxide and cold air of non-smoking healthy volunteers of different ages. Zentralbl Hyg 195:556–566

    CAS  Google Scholar 

  • Irwin R (1990) Toxicology and carcinogenesis studies of furfural (CAS NO. 98-01-1) in F344/N rats and B6C3F1 mice (gavage studies). National Toxicology Program Technical Report No. 382. US Department of Health and Human Services, Public Health Service, National Institute of Health, Research Triangle Park, NC, pp 1–201

  • Kamata E, Nakadate M, Uchida O, Ogawa Y, Suzuki S, Kaneko T, Saito M, Kurokawa Y (1997) Results of a 28-month chronic inhalation toxicity study of formaldehyde in male Fischer-344 rats. J Toxicol Soc 22:239–254

    CAS  Google Scholar 

  • Kane LE, Barrow CS, Alarie Y (1979) A short-term test to predict acceptable levels of exposure to airborne sensory irritants. Am Ind Hyg Assoc J 40:207–229

    PubMed  CAS  Google Scholar 

  • Kane LE, Dombroske R, Alarie Y (1980) Evaluation of sensory irritation from some common industrial solvents. Am Ind Hyg Assoc J 41:451–455

    PubMed  CAS  Google Scholar 

  • Kehrl HR, Roger LJ, Hazucha MJ, Horstman DH (1987) Differing response of asthmatics to sulfur dioxide exposure with continuous and intermittent exercise. Am Rev Respir Dis 135:350–355

    PubMed  CAS  Google Scholar 

  • Kerns WD, Pavkov KL, Donofrio DJ, Gralla EJ, Swenberg JA (1983) Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Res 43:4382–4392

    PubMed  CAS  Google Scholar 

  • Kieswetter E, Blaszkewicz M, Vangala RR, Seeber A (1994) Acute exposure to acetone in a factory and ratings of well-being. Neurotoxicology 15:597–602

    Google Scholar 

  • Kimoto A, Saitou M, Hirano Y, Iwai T, Tomioka K, Miyata K, Yamada T (1999) A new, simple method for measuring mucociliary clearance in guinea-pigs. Pulm Pharmacol Ther 12:49–54

    PubMed  CAS  Google Scholar 

  • Kirk-Othmer (1984) Furfural kirk-othmer encyclopedia of chemical technology, 3rd edn. Wiley, New York, NY, pp 501–510

    Google Scholar 

  • Kittel G (1968) Die moderne Olfaktometrie und Odorimetrie. Azetonschwellen-untersuchungen. Z Laryngeol Rhinol Otol 47:893–903

    CAS  Google Scholar 

  • Kittel G, Wendelstein PJG (1971) Zur Differenzierung der Olfaktiven Wahrnehmungs- und Erkennungsschwelle. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 199:683–687

    PubMed  CAS  Google Scholar 

  • Kobal G, Hummel T (1989) Scalp distribution of chemosensory potentials elicited by trigeminal and olfactory stimuli. Chem Senses 14:190

    Google Scholar 

  • Kobal G, van Toller S, Hummel T (1989) Is there directional smelling? Experientia 45:130–132

    PubMed  CAS  Google Scholar 

  • Kobal G, Hummel T, van Toller S (1992) Differences in human chemosensory evoked potential to olfactory and somatosensory chemical stimuli presented to left and right nostrils. Chem Senses 17:233–244

    CAS  Google Scholar 

  • Kulle TJ (1993) Acute odor and irritation response in healthy nonsmokers with formaldehyde exposure. Inhal Toxicol 5:323–332

    Article  CAS  Google Scholar 

  • Kulle TJ, Sauder LR, Shanty F, Kerr HD, Farrell BP, Miller WR, Milman JH (1984) Sulfur dioxide and ammonium sulfate effects on pulmonary function and bronchial reactivity in human subjects. Am Ind Hyg Assoc J 45:156–161

    PubMed  CAS  Google Scholar 

  • Kulle TJ, Sauder LR, Hebel JR, Miller WR, Green DJ, Shanty F (1986) Pulmonary effects of sulfur dioxide and respirable carbon aerosol. Environ Res 41:239–250

    PubMed  CAS  Google Scholar 

  • Kulle TJ, Sauder LR, Hebel JR, Green DJ, Chathan MD (1987) Formaldehyde dose–response in healthy non-smokers. J Air Pollut Control Assoc 37:919–924

    CAS  Google Scholar 

  • Lawther PJ, Macfarlane AJ, Waller RE, Brooks AGF (1975) Pulmonary function and sulphur dioxide, some preliminary findings. Environ Res 10:355–367

    PubMed  CAS  Google Scholar 

  • Lewis TR, Moorman WJ, Ludmann WF, Campbell KI (1973) Toxicity of long-term exposure to oxides of sulfur. Arch Environ Health 26:16–21

    PubMed  CAS  Google Scholar 

  • Linn WS, Shamoo DA, Venet TG, Bailey RM, Wightman LH, Hackney JD (1984a) Comparative effects of sulfur dioxide exposure at 5°C and 22°C in exercising asthmatics. Am Rev Respir Dis 129:234–239

    PubMed  CAS  Google Scholar 

  • Linn WS, Avol EL, Shamoo DA, Venet TG, Anderson KR, Whynot JD, Hackney JD (1984b) Asthmatics’ responses to 6-hour sulfur dioxide exposures on two successive days. Arch Environ Health 39:313–319

    PubMed  CAS  Google Scholar 

  • Linn WS, Avol EL, Peng RC, Shamoo DA, Hackney JD (1987) Replicated dose–response study of sulfur dioxide effects in normal, atopic, and asthmatic volunteers. Am Rev Respir Dis 136:1127–1134

    PubMed  CAS  Google Scholar 

  • Lipsett M (1992) Oxides of nitrogen and sulfur. In: Sullivan JB Jr, Krieger GR (eds) Hazardous materials toxicology—clinical principles of environmental health. Williams and Wilkins, Baltimore, MD, pp 964–972

    Google Scholar 

  • Maarse H, Visscher AC (1989) Volatile compounds in Food, 6th edn. TNO-CIVO Food Analysis Institute, Zeist, The Netherlands

    Google Scholar 

  • Mast TJ, Evanoff JJ, Rommerheim RL, Stoney KH, Weigel RJ, Westerberg RB (1988) Inhalation developmental toxicology studies: teratology study of acetone in mice and rats. NIH-Y01-ES-70153. Pacific Northwest Laboratory. Prepared for the National Institute of Environmental Health Sciences, National Toxicology Program (NTP), Richland, Washington, DC

  • Mergler D, Beauvais B (1992) Olfactory threshold shift following controlled 7-hour exposure to toluene and/or xylene. Neurotoxicology 13:211–216

    PubMed  CAS  Google Scholar 

  • Monticello TM, Miller FJ, Morgan KT (1991) Regional increases in rat nasal epithelial cell proliferation following acute and subchronic inhalation of formaldehyde. Toxicol Appl Pharmacol 111:409–421

    PubMed  CAS  Google Scholar 

  • Monticello TM, Swenberg JA, Gross EA, Leininger JR, Kimbell JS, Seilkop S, Starr TB, Gibson JE, Morgan KT (1996) Correlation of regional and nonlinear formaldehyde-induced nasal cancer with proliferating populations of cells. Cancer Res 56:1012–1022

    PubMed  CAS  Google Scholar 

  • NIOSH (1997) NIOSH pocket guide to chemical hazards DHHS (NIOSH), publication No. 97-140. US Government Printing Office, Washington, DC

  • Odeigah PGC (1994) Smell acuity for acetone and its relationship to taste ability to phenylthiocarbamide in a Nigerian population. East Afr Med J 71:462–466

    PubMed  CAS  Google Scholar 

  • Patte F, Etcheto M, Laffort P (1975) Selected and standardized values of suprathreshold odor intensities for 110 substances. Chem Senses Flavor 1:283–305

    CAS  Google Scholar 

  • Paustenbach DJ (2000) The history and biological basis of occupational exposure limits for chemical agents, vol 3, 5th edn. In: Harris R (ed) Patty’s industrial hygiene. Wiley, New York, NY, pp1903–2000

  • Paustenbach DJ (2001) Approaches and considerations for setting occupational exposure limits for sensory irritants: report of recent symposia. AIHAJ 62:697–704

    PubMed  CAS  Google Scholar 

  • Paustenbach DJ, Alarie Y, Kulle T, Schachter N, Smith RG, Swenberg J, Witschi HP, Horowitz S (1997) A recommended occupational exposure limit for formaldehyde based on irritation. J Toxicol Environ Health 50:217–263

    PubMed  CAS  Google Scholar 

  • Pogosyan UG (1965) The effect on man of the combined action of small concentrations of acetone and phenol in the atmosphere. Hyg Sanit 30:1–9

    Google Scholar 

  • Pozzani UC, Weil CS, Carpenter CP (1959) The toxicological basis of threshold limit values: 5. The experimental inhalation of vapor mixtures by rats, with notes upon the relationship between single dose inhalation and single dose oral data. Am Ind Hyg Assoc J 20:364–369

    PubMed  CAS  Google Scholar 

  • Reuzel PGJ, Wilmer JWGM, Woutersen RA, Zwart A, Rombout PJ, Feron VJ (1990) Interactive effects of ozone and formaldehyde on the nasal respiratory lining epithelium in rats. J Toxicol Environ Health 29:279–292

    Article  PubMed  CAS  Google Scholar 

  • Roger LJ, Kehrl HR, Hazucha M, Horstmann DH (1985) Bronchoconstriction in asthmatics exposed to sulfur dioxide during repeated exercise. J Appl Physiol 59:784–791

    PubMed  CAS  Google Scholar 

  • Roscher S, Mohammadian P, Schneider A, Wendler J, Hummel T, Kobal G (1996) Olfactory input facilitates trigeminal chemosensitivity. ECRO Abstr 21:24

    Google Scholar 

  • Ross DG (1973) Acute acetone intoxication involving eight male workers. Am Occup Hyg J 16:73–75

    CAS  Google Scholar 

  • Ruth JH (1986) Odor thresholds and irritation levels of several chemical substances: a review. Am Ind Hyg Assoc J 47:A142–A151

    PubMed  CAS  Google Scholar 

  • Samet JM (1995) Asthma and the environment: do environmental factors affect the incidence and prognosis of asthma? Toxicol Lett 82/83:33–38

    CAS  Google Scholar 

  • Sandström T, Kolmodin-Hedman B, Stjernberg N, Andersson MC, Löfvenius G (1988) Challenge test for sulfur dioxide—symptom and lung function measurements. Scand J Work Environ Health 14(Suppl 1):77–79

    PubMed  Google Scholar 

  • Satoh T, Omae K, Nakashima H, Takebayashi T, Matsumura H, Kawai T, Nakaza M, Sakurai H (1996) Relationship between acetone exposure concentration and health effects in acetate fiber plant workers. Int Arch Occup Environ Health 68:147–153

    PubMed  CAS  Google Scholar 

  • Sauder LR, Chatham MD, Green DJ, Kulle TJ (1986) Acute pulmonary response to formaldehyde exposure in healthy nonsmokers. J Occup Med 28:420–424

    PubMed  CAS  Google Scholar 

  • Sauder LR, Green DJ, Chatham MD, Kulle TJ (1987) Acute pulmonary response of asthmatics to 3.0 ppm formaldehyde. Toxicol Ind Health 3:569–578

    PubMed  CAS  Google Scholar 

  • Scanlon PD, Seltzer J, Ingram RH Jr, Reid L, Drazen JM (1987) Chronic exposure to sulfur dioxide. Physiologic and histologic evaluation of dogs exposed to 50 or 15 ppm. Am Rev Respir Dis 135:831–839

    PubMed  CAS  Google Scholar 

  • Schachter EN, Witek TJ Jr, Beck GJ, Hosein HB, Colice G, Leaderer BP, Cain W (1984) Airway effects of low concentrations of sulfur dioxide: dose–response characteristics. Arch Environ Health 39:34–42

    PubMed  CAS  Google Scholar 

  • Schachter EN, Witek TJ, Brody DJ, Tosun T, Beck GJ, Leaderer BP (1986) A study of respiratory effects from exposure to 2 ppm formaldehyde in healthy subjects. Arch Environ Health 41:229–234

    Article  PubMed  CAS  Google Scholar 

  • Schachter EN, Witek TJ, Brody DJ, Tosun T, Beck GJ (1987) A study of respiratory effects from expsoure to 2.0 ppm formaldehyde in occupationally exposed workers. Environ Res 44:188–205

    PubMed  CAS  Google Scholar 

  • Schaper M (1993) Development of a database for sensory irritants and its use in establishing occupational exposure limits. Am Ind Hyg Assoc J 54:488–544

    PubMed  CAS  Google Scholar 

  • Schwartz DA (1987) Acute inhalational injury. In: Rosenstock L (eds) Occupational pulmonary disease. Hanley & Belfus, Philadelphia, PA, pp 297–318

    Google Scholar 

  • Seeber A, Kieswetter E, Blaszkewicz M (1991a) Correlations between subjective disturbances due to acute exposure to organic solvents and internal dose. In: Mutti A, Costa LG, Manzo L, Cranmer JM (eds) Current issues in neurotoxicology. Intox Press, Little Rock, AR, pp 265–269

    Google Scholar 

  • Seeber A, Kieswetter E, Giller D, Vangala RR, Blaszkewicz M, Golka K, Bolt HM (1991b) Wirkungen acuter Exposition gegenüber Aceton und Ethylacetat im MAK-Beriech. Verh Dtsch Ges Arbeitsmed 31:415–418

    Google Scholar 

  • Seeber A, Kieswetter E, Vangala RR, Blaszkewicz M, Golka K (1992a) Combined exposure to organic solvents: an experimental approach using acetone and ethylacetate. Appl Psychol Intern Rev 41:281–292

    Google Scholar 

  • Seeber A, Kieswetter E, Blasskewicz M (1992b) Correlations between subjective disturbances due to acute exposure to organic solvents and internal dose. Neurotoxicology 13:265–270

    PubMed  CAS  Google Scholar 

  • Seeber A, Blaszkewicz M, Golka K, Kieswetter E, Vangala RR, Bolt HM (1993a) Exposure to acetone and neurobehavioural effects: comparison of two experiment and a field study. The 24th International Congress on Occupational Health, Nizza, pp 1–9

  • Seeber A, Blaszkewicz M, Kieswetter E, Vangala RR (1993b) Untersuchungsbericht zum Einfluss von Aceton auf das Befinden von Schichtmitarbeitern im Werk Freiburg der Rhone-Poulenc Rhodia AG. Report of the Institute for Work Physiology, University of Dortmund, Germany, February

  • Seeber A, Blaszkewicz M, Golka K, Kieswetter E (1997) Solvent exposure and ratings of well-being: dose–effect relationships and consistency of data. Environ Res 73:81–91

    PubMed  CAS  Google Scholar 

  • Sellakumar AR, Snyder CA, Solomon JJ, Albert RE (1985) Carcinogenicity of formaldehyde and hydrogen chloride in rats. Toxicol Appl Pharmacol 81:401–406

    PubMed  CAS  Google Scholar 

  • Sheppard D, Eschenbacher WL, Boushey HA, Bethel RA (1984) Magnitude of the interaction between the bronchomotor effects of sulfur dioxide and those of dry (cold) air. Am Rev Respir Dis 130:52–55

    PubMed  CAS  Google Scholar 

  • Shusterman D (2003) Toxicology of nasal irritants. Curr Allergy Asthma Rep 3:258–265

    PubMed  Google Scholar 

  • Shusterman D, Murphy MA, Balmes J (2003) Differences in nasal irritant sensitivity by age, gender, and allergic rhinitis status. Int Arch Occup Environ Health 76:577–583

    PubMed  Google Scholar 

  • Snell RE, Luchsinger PC (1969) Effects of sulfur dioxide on expiratory flow rates and total respiratory resistance in normal human subjects. Arch Environ Health 18:693–698

    PubMed  CAS  Google Scholar 

  • Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL, Sullivan EV, Gabrieli JD (1998) Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392:282–286

    PubMed  CAS  Google Scholar 

  • Stacy RW, Seal E Jr, House DE, Green J, Roger LJ, Raggio L (1983) A survey of effects of gaseous and aerosol pollutants on pulmonary function of normal males. Arch Environ Health 38:104–115

    PubMed  CAS  Google Scholar 

  • Steinhagen WH, Barrow CS (1984) Sensory irritation structure–activity study of inhaled aldehydes in B6C3F1 and Swiss–Webster mice. Toxicol Appl Pharmacol 72:495–503

    PubMed  CAS  Google Scholar 

  • Stratmann U, Lehmann RR, Steinbach T, Wessling G (1991) Effect of sulfur dioxide inhalation on the respiratory tract of the rat. Zentralbl Hyg Umweltmed 192:324–335

    PubMed  CAS  Google Scholar 

  • Swenberg JA, Gross EA, Randall HW, Barrow CS (1983) The effect of formaldehyde exposure on cytotoxicity and cell proliferation. In: Clary JJ, Gibson JE, Waritz RS (eds) Formaldehyde toxicology, epidemiology, mechanisms. Marcel Dekker, New York, NY, pp 225–236

    Google Scholar 

  • Swenberg JA, Gross EA, Randall HW (1986) Localization and quantitation of cell proliferation following exposure to nasal irritants. In: Barrow CS (eds) Toxicology of the nasal passages. Hemisphere, Washington, DC, pp 291–300

    Google Scholar 

  • Thürauf N, Hummel T, Kettenmann B, Kobal G (1993) Nociceptive and reflexive responses recorded from the human nasal mucosa. Brain Res 629:293–299

    PubMed  Google Scholar 

  • Tkach NZ (1965) Combined effect of acetone and acetophenone in the atmosphere. Hyg Sanit 30:179–185

    Google Scholar 

  • Utell MJ, Looney RJ (1995) Environmentally induced asthma. Toxicol Lett 82/83:47–53

    CAS  Google Scholar 

  • Venables KM, Chan-Yeung M (1997) Occupational asthma. Lancet 349:1465–1469

    PubMed  CAS  Google Scholar 

  • Weber-Tschopp A, Fischer T, Grandjean E (1977) Reizwirkung des Formadehyds (HCHO) auf den Menschen. Int Arch Occup Environ Health 39:207–218

    PubMed  CAS  Google Scholar 

  • WHO (1989) Environmental health criteria 89—formaldehyde. International Programme on Chemical Safety, World Health Organization, Geneva, p 219

  • WHO (1998) Environmental health criteria 207—acetone. International Programme on Chemical Safety, World Health Organization, Geneva, p 159

  • Wilmer JWGM, Woutersen RA, Appelman LM, Leeman WR, Feron VJ (1987) Subacute (4-week) inhalation toxicity study of formaldehyde in male rats: 8-hour intermittent versus 8-hour continuous exposures. J Appl Toxicol 7:15–16

    PubMed  CAS  Google Scholar 

  • Wilmer JWGM, Woutersen RA, Appelman LM, Leeman WR, Feron VJ (1989) Subchronic (13-week) inhalation toxicity study of formaldehyde in male rats: 8-hour intermittent versus 8-hour continuous exposures. Toxicol Lett 47:287–293

    PubMed  CAS  Google Scholar 

  • Witek TJ, Schachter EN (1985) Airway responses to sulfur dioxide and methacholine in asthmatics. J Occup Med 27:265–268

    PubMed  CAS  Google Scholar 

  • Witek TJ, Schachter EN, Tosun T, Beck GJ, Leaderer BP (1987) An evaluation of respiratory effects following exposure to 2.0 ppm formaldehyde in asthmatics: lung function, symptoms, and airway reactivity. Arch Environ Health 42:230–237

    PubMed  CAS  Google Scholar 

  • Woutersen RA, Appelman LM, Wilmer JWGM, Falke HE, Feron VJ (1987) Subchronic (13-week) inhalation toxicity study of formaldehyde in rats. J Appl Toxicol 7:43–49

    PubMed  CAS  Google Scholar 

  • Woutersen RA, Garderen van-Hoetmer A, Bruijntjes JP, Zwart A, Feron VJ (1989) Nasal tumours in rats after severe injury to the nasal mucosa and prolonged exposure to 10 ppm formaldehyde. J Appl Toxicol 9:39–46

    PubMed  CAS  Google Scholar 

  • Wysocki CJ, Dalton P, Brody MJ, Lawley HJ (1997) Acetone odor and irritation thresholds obtained from acetone-exposed factory workers and from control (occupationally non-exposed) subjects. Am Ind Hyg Assoc J 58:704–712

    PubMed  CAS  Google Scholar 

  • Zeller H, Hofmann Th, Meineke KH, Oettel H (1964) Naunyn Schmiedebergs Arch Pharmacol 247:359

    Google Scholar 

  • Zwart A, Woutersen RA, Wilmer JWGM, Spit BJ, Feron VJ (1988) Cytotoxic and adaptive effects in rat nasal epithelium after 3-day and 13-week exposure to low concentrations of formaldehyde vapour. Toxicology 51:87–99

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josje H.E. Arts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arts, J.H., de Heer, C. & Woutersen, R.A. Local effects in the respiratory tract: relevance of subjectively measured irritation for setting occupational exposure limits. Int Arch Occup Environ Health 79, 283–298 (2006). https://doi.org/10.1007/s00420-005-0044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-005-0044-9

Keywords

Navigation