Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way



Epidemiological studies have reported an association between exposure to extremely low frequency electromagnetic fields (ELF-EMFs) and increased risk of cancerous diseases, albeit without dose–effect relationships. The validity of such findings can be corroborated only by demonstration of dose-dependent DNA-damaging effects of ELF-EMFs in cells of human origin in vitro.


Cultured human diploid fibroblasts were exposed to intermittent ELF electromagnetic fields. DNA damage was determined by alkaline and neutral comet assay.


ELF-EMF exposure (50 Hz, sinusoidal, 1–24 h, 20–1,000 μT, 5 min on/10 min off) induced dose-dependent and time-dependent DNA single-strand and double-strand breaks. Effects occurred at a magnetic flux density as low as 35 μT, being well below proposed International Commission of Non-Ionising Radiation Protection (ICNIRP) guidelines. After termination of exposure the induced comet tail factors returned to normal within 9 h.


The induced DNA damage is not based on thermal effects and arouses concern about environmental threshold limit values for ELF exposure.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2a, b.
Fig. 3a, b.
Fig. 4.
Fig. 5.


  1. Anderson D, Yu TW, Phillips BJ, Schmerzer P (1994) The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the comet assay. Mutat Res 307:261–271

    CAS  PubMed  Google Scholar 

  2. Diem E, Ivancsits S, Rüdiger HW (2002) Basal levels of DNA strand breaks in human leukocytes determined by comet assay. J Toxicol Environ Health A 65:641–648

    Article  CAS  PubMed  Google Scholar 

  3. Fairbairn JJ, Khan MW, Ward KJ, Loveridge BW, Fairbairn DW, O'Neill KL (1995) Induction of apoptotic cell DNA fragmentation in human cells after treatment with hyperthermia. Cancer Lett 89:183–188

    Article  CAS  PubMed  Google Scholar 

  4. Feychting M, Forssen U, Floderus B (1997) Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology 8:384–389

    CAS  PubMed  Google Scholar 

  5. International Agency for Research on Cancer (2002) Non-ionizing radiation, part 1: static and extremely low-frequency (ELF) electric and magnetic fields. IARC Monogr Eval Carcinog Risks Hum 80:1–395

    PubMed  Google Scholar 

  6. International Commission on Non-Ionizing Radiation Protection (1998) Guidelines for limiting exposure to time-varying, magnetic, and electromagnetic fields up to 300 GHz. Health Phys 74:494–522

    PubMed  Google Scholar 

  7. Ivancsits S, Diem E, Pilger A, Rüdiger HW, Jahn O (2002a) Induction of DNA strand breaks by exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res 519:1–13

    Article  CAS  PubMed  Google Scholar 

  8. Ivancsits S, Pilger A, Diem E, Schaffer A, Rüdiger HW (2002b) Vanadate induces DNA strand breaks in cultured human fibroblasts at doses relevant to occupational exposure. Mutat Res 519:25–35

    Article  CAS  PubMed  Google Scholar 

  9. Lai H, Singh N (1997) Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics 18:156–165

    Article  CAS  PubMed  Google Scholar 

  10. Li CY, Theriault G, Lin RS (1997) Residential exposure to 60 Hz magnetic fields and adult cancers in Taiwan. Epidemiology 8:25–30

    CAS  PubMed  Google Scholar 

  11. McCann J, Dietrich F, Rafferty C, Martin AO (1993) A critical review of the genotoxic potential of electric and magnetic fields. Mutat Res 297:61–95

    CAS  PubMed  Google Scholar 

  12. McCann J, Dietrich F, Rafferty C (1998) The genotoxic potential of electric and magnetic fields: an update. Mutat Res 411:45–86

    CAS  PubMed  Google Scholar 

  13. Moulder JE (1998) Power-frequency fields and cancer. Crit Rev Biomed Eng 26:1–116

    CAS  PubMed  Google Scholar 

  14. Murphy JC, Kaden DA, Warren J, Sivak A (1993) Power frequency electric and magnetic fields: a review of genetic toxicology. Mutat Res 296: 221–240

    CAS  PubMed  Google Scholar 

  15. Östling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    CAS  PubMed  Google Scholar 

  16. Savitz DA, Wachtel H, Barnes FA, John EM, Tvrdik JG (1988) Case control study of childhood cancer and exposure to 60 Hz magnetic fields. Am J Epidemiol 128:21–38

    CAS  PubMed  Google Scholar 

  17. Schreibner GH, Swaen GMH, Meijers JMM, Slangen JJM, Sturmans F (1993) Cancer mortality and residence near electricity transmission equipment: a retrospective cohort study. Int J Epidemiol 22:9-15

    PubMed  Google Scholar 

  18. Singh N, Lai H (1998) 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutat Res 400:313–320

    CAS  PubMed  Google Scholar 

  19. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    CAS  PubMed  Google Scholar 

  20. Singh NP, Tice RR, Stephens RE, Schneider EL (1991) A microgelelectrophoresis technique for direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscope slides. Mutat Res 252:289–296

    CAS  PubMed  Google Scholar 

  21. Svedenstal BM, Johanson KJ, Mild K H (1999a) DNA damage induced in brain cells of CBA mice exposed to magnetic fields. In Vivo 13:551–552

    CAS  PubMed  Google Scholar 

  22. Svedenstal BM, Johanson KJ, Mattsson MO, Paulsson LE (1999b) DNA damage, cell kinetics and ODC activities studied in CBA mice exposed to electromagnetic fields generated by transmission lines. In Vivo 13:507–513

    CAS  PubMed  Google Scholar 

  23. Tomenius L (1986) 50 Hz electromagnetic environment and the incidence of childhood tumors in Stockholm County. Bioelectromagnetics 7:191–207

    CAS  PubMed  Google Scholar 

  24. Van den Bosch M, Lohman PHM, Pastink (2002) A DNA double strand break repair by homologous recombination. Rev Biol Chem 383:873–892

    Google Scholar 

  25. Van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-strand break connection. Nat Rev Genet 2:196–206

    Article  PubMed  Google Scholar 

  26. Verkasalo PK, Pukkala E, Hongisto MY, Valjus JE, Järvinen PJ, Heikkilä KV, Koskenvuo M (1993) Risk of cancer in Finnish children living close to power lines. Br Med J 307:895–899

    CAS  Google Scholar 

  27. Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Am J Epidemiol 109: 273–284

    CAS  PubMed  Google Scholar 

Download references


This study was funded by the European Union under the programme "Quality of Life and Management of Living Resources", Key Action 4 "Environment and Health": QLK4-CT-01574.

Author information



Corresponding author

Correspondence to Sabine Ivancsits.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ivancsits, S., Diem, E., Jahn, O. et al. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health 76, 431–436 (2003).

Download citation


  • 50-Hz sinusoidal
  • Intermittent exposure
  • Comet assay