Skip to main content
Log in

The analytical solution of an unsteady gas flow with shocks

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

A one-dimensional unsteady gas flow induced by an impulsive motion of a piston is studied by using a method of characteristics. The flow pattern in the nonisentropic flow region has been determined along particle paths emerging from the front shock into the region and along the positive characteristics emerging from the piston. The analytical solution obtained here enables us to determine the locations of the moving shock boundaries. It is found that the solution, which is also numerically computed and graphically presented, provides a good beginning toward the exact description of shock dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedrichs, K. O.: Formation and decay of shock waves. Commun Pure Appl Math 1 (1948) 211–245

    Article  MathSciNet  Google Scholar 

  2. Pillow, A. F.: The formation and growth of shock waves in the one-dimensional motion of a gas. Proc Camb Phil Soc. 45 (1949) 558–586

    Article  MathSciNet  MATH  Google Scholar 

  3. Lighthill, M. J.: Energy distribution behind decaying shocks. The Phil Mag 41 (1950) 1101–1128

    MathSciNet  MATH  Google Scholar 

  4. Whitham, G. B.: Linear and non-linear waves. New York: Wiley 1974

    Google Scholar 

  5. Lighthill, M. J.: Higher approximations in aerodynamic theory. Princeton: Princ. Univ. Press 1960

    MATH  Google Scholar 

  6. Mahony, J. J.: A critique of shock-expansion theory. J Aero Sci 22 (1955) 673–680

    MathSciNet  Google Scholar 

  7. Meyer, R. E.; Ho, D. V.: Notes on nonuniform shock propagation. J Acoust Soc Am 35 (1963) 1126–1132

    Article  MathSciNet  Google Scholar 

  8. Sachdev, P. L.; Venkataswamy-Reddy, A.: Some exact solutions describing unsteady plane gas flows with shocks. Quart Appl Math 40 (1983) 249–272

    MathSciNet  Google Scholar 

  9. Sharma, R. R.; Sharma, V. D.; Pandey, B. D.; Shukla P.: Approximate and numerical solutions of a gaseous flow with shocks. Quart J Mech Appl Math 46 (1993) 141–152

    Article  MathSciNet  MATH  Google Scholar 

  10. Ustinov, M. D.: Approximate solution to nonself-similar problem of motion of a piston after an impact. Izv. Akad. Nauk SSSR, Mech. zhid. i gaza 2 (1982) 167–171

    Google Scholar 

  11. Pert, G. J.: Self-similar flows with uniform velocity gradient and their use in modeling the free expansion of polytropic gases. J Fluid Mech 100 (1980) 257–277

    Article  MathSciNet  MATH  Google Scholar 

  12. Poslavskii, S. A.: A new class of exact solutions with shock waves in gas dynamics. PMM 49 (1985) 752–757

    MathSciNet  Google Scholar 

  13. Sharma, V. D.; Ram, R.; Sachdev, P. L.: Uniformly valid analytical solution to the problem of a decaying shock wave. J Fluid Mech 185 (1987) 153–170

    Article  MATH  Google Scholar 

  14. Sirovich, L.; Chong, T. H.: Approximate solution in gasdynamics. Phys Fluids 23 (1980) 1291–1295

    Article  MathSciNet  MATH  Google Scholar 

  15. Chong, T. H.; Sirovich, L.: Numerical integration of the gasdynamic equations. Phys Fluids 23 (1980) 1296–1300

    Article  MathSciNet  MATH  Google Scholar 

  16. Lewis, T. S.; Sirovich, L.: Approximate and exact numerical computation of supersonic flow over an airfoil. J Fluid Mech 112 (1981) 265–282

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R.R., Pandey, B.D. & Sharma, P. The analytical solution of an unsteady gas flow with shocks. Arch. Appl. Mech. 67, 158–166 (1997). https://doi.org/10.1007/s004190050108

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004190050108

Key words

Navigation