Skip to main content
Log in

Nonlinear free vibration of pre-buckled PFG micro/nanotubes via nonlocal strain and velocity gradient theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear free vibration of simply supported porous functionally graded (PFG) size-dependent tubes under compressive axial loading in pre-buckling regime are investigated. The nonlinear Euler–Bernoulli beam hypothesis is employed within the framework of the nonlocal strain and velocity gradient theory to derive the nonlinear partial differential equation of motion. It is assumed that the material properties are gradually graded in the radial direction. Additionally, two different porosity distribution patterns are used in the radial direction. The modified power-law function is employed to estimate the effective properties of PFGM/NTs. The partial differential equation governing the lateral nonlinear vibration of prestressed PFGM/NTs is achieved by employing Hamilton’s principle. The method of multiple scales is utilized to solve the nonlinear ordinary differential equation system obtained by applying the Galerkin method to the nonlinear partial differential equation of lateral motion. The nonlinear frequencies of pre-buckled PFGM/NTs, which reflect the effects of the amplitude of different modes involved in vibration response, are formulated. The effects of different parameters, such as length scale parameters, porosity distribution pattern, and material composition, on the nonlinear frequencies of pre-buckled porous functionally graded size-dependent tubes are examined. The pre-buckling behavior stage demonstrates that porosity reduces the static stability of FGM/NTs, but the power-law index value and modulus of elasticity ratio can modify the softening effects of porosity. Research indicates that the presence and distribution pattern of porosity, along with material composition, can enhance the nonlinear frequencies of M/NTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations. No datasets were generated or analysed during the current study.

References

  1. Mota, A.F., Loja, M.A.R.: Mechanical behavior of porous functionally graded nanocomposite materials. C J. Carbon Res. 5, 34 (2019). https://doi.org/10.3390/c5020034

    Article  Google Scholar 

  2. El-Galy, I.M., Saleh, B.I., Ahmed, M.H.: Functionally graded materials classifcations and development trends from industrial point of view. SN Appl. Sci. 1, 1378 (2019). https://doi.org/10.1007/s42452-019-1413-4

    Article  Google Scholar 

  3. Li, Q., Wu, D., Chen, X., Liu, L., Yu, Y., Gao, W.: Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. Int. J. Mech. Sci. 148, 596–610 (2018)

    Article  Google Scholar 

  4. Radić, N.: On buckling of porous double-layered FG nanoplates in the Pasternak elastic foundation based on nonlocal strain gradient elasticity. Compos. Part B-Eng. 153, 465–479 (2018)

    Article  Google Scholar 

  5. She, G.-L., Ren, Y.-R., Yuana, F.-G., Xiao, W.-S.: On vibrations of porous nanotubes. Int. J. Eng. Sci. 125, 23–35 (2018)

    Article  MathSciNet  Google Scholar 

  6. Hadji, L., Avcar, M.: Free vibration analysis of FG porous sandwich plates under various boundary conditions. J. Appl. Comput. Mech. 7(2), 505–519 (2021). https://doi.org/10.22055/JACM.2020.35328.2628

    Article  Google Scholar 

  7. Avcar, M., Hadji, L., Tounsi, A.: The static bending analysis of porous functionally graded sandwich beams. In: Chakraverty, S., Jena, S.K., Civalek, Ö. (eds.) Functionally Graded Structures: Modelling and computation of static and dynamical problems, pp. 4-1–4-17. IOP Publishing (2023). https://doi.org/10.1088/978-0-7503-5301-4ch4

    Chapter  Google Scholar 

  8. Avcar, M., Hadji, L., Civalek, Ö.: Free vibration analysis of porous functionally graded sandwich beams. In: Chakraverty, S., Jena, S.K., Civalek, Ö. (eds.) Functionally Graded Structures: Modelling and computation of static and dynamical problems, pp. 8-1–8-16. IOP Publishing (2023). https://doi.org/10.1088/978-0-7503-5301-4ch8

    Chapter  Google Scholar 

  9. Thang, P.T., Nguyen-Thoi, T., Lee, D., Kang, J., Lee, J.: Elastic buckling and free vibration analyses of porous-cellular plates with uniform and non-uniform porosity distributions. Aerosp. Sci. Technol. 79, 278–287 (2018)

    Article  Google Scholar 

  10. Hung, D.X., Tu, T.M., Long, N.V., Anh, P.H.: Nonlinear buckling and postbuckling of FG porous variable thickness toroidal shell segments surrounded by elastic foundation subjected to compressive loads. Aerosp. Sci. Technol. 107, 106253 (2020)

    Article  Google Scholar 

  11. Rao, R., Sahmani, S., Safaei, B.: Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch. Civ. Mech. Eng. 21, 98 (2021)

    Article  Google Scholar 

  12. Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  13. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Article  Google Scholar 

  14. Thai, H.-T., Vo, T.P., Nguyen, T.-K., Kim, S.-E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)

    Article  Google Scholar 

  15. Safaei, B., Fattahi, A.M.: Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models. Mechanica. 23(5), 678–687 (2017). https://doi.org/10.5755/j01.mech.23.5.14883

    Article  Google Scholar 

  16. Li, Q., Xie, B., Sahmani, S., Safaei, B.: Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction. J. Braz. Soc. Mech. Sci. Eng. 42, 237 (2020). https://doi.org/10.1007/s40430-020-02317-2

    Article  Google Scholar 

  17. Wang, P., Yuan, P., Sahmani, S., Safaei, B.: Surface stress size dependency in nonlinear free oscillations of FGM quasi-3D nanoplates having arbitrary shapes with variable thickness using IGA. Thin-Walled Struct. 166, 108101 (2021). https://doi.org/10.1016/j.tws.2021.108101

    Article  Google Scholar 

  18. Fan, L., Sahmani, S., Safaei, B.: Couple stress-based dynamic stability analysis of functionally graded composite truncated conical microshells with magnetostrictive facesheets embedded within nonlinear viscoelastic foundations. Eng. Comput. 37, 1635–1655 (2021). https://doi.org/10.1007/s00366-020-01182-w

    Article  Google Scholar 

  19. Yang, Z., Safaei, B., Sahmani, S., Zhang, Y.: A couple-stress-based moving Kriging meshfree shell model for axial postbuckling analysis of random checkerboard composite cylindrical microshells. Thin-Walled Struct. 170, 108631 (2022). https://doi.org/10.1016/j.tws.2021.108631

    Article  Google Scholar 

  20. Sahmani, S., Safaei, B.: Microstructural-dependent nonlinear stability analysis of random checkerboard reinforced composite micropanels via moving Kriging meshfree approach. Eur. Phys. J. Plus. 136, 806 (2021). https://doi.org/10.1140/epjp/s13360-021-01706-3

    Article  Google Scholar 

  21. Aifantis, E.C.: On the gradient approach-Relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 49, 1367–1377 (2011)

    Article  MathSciNet  Google Scholar 

  22. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  Google Scholar 

  23. Li, L., Hu, Y., Ling, L.: Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos. Struct. 133, 1079–1092 (2015)

    Article  Google Scholar 

  24. Li, L., Hu, Y.: Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Comp. Mater. Sci. 112, 282–288 (2016)

    Article  Google Scholar 

  25. Tang, Y., Liu, Y., Zhao, D.: Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient theory. Physica E 84, 202–208 (2016)

    Article  Google Scholar 

  26. Ebrahimi, F., Barati, M.R., Dabbagh, A.: A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int. J. Eng. Sci. 107, 169–182 (2016)

    Article  Google Scholar 

  27. Ebrahimi, F., Dabbagh, A.: On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates vibrational strain gradient theory. Compos. Struct. 162, 281–293 (2017)

    Article  Google Scholar 

  28. Li, X., Li, L., Hu, Y., Ding, Z., Deng, W.: Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos. Struct. 165, 250–265 (2017)

    Article  Google Scholar 

  29. Li, L., Hu, Y.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2019)

    Article  MathSciNet  Google Scholar 

  30. Sahmani, S., Aghdam, M.M.: Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory. J. Theor. Biol. 422, 59–71 (2017)

    Article  MathSciNet  Google Scholar 

  31. Li, L., Hu, Y.: Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. Int. J. Mech. Sci. 120, 159–170 (2017)

    Article  Google Scholar 

  32. Song, R., Sahmani, S., Safaei, B.: Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes. Appl. Math. Mech.-Engl. Ed. 42, 771–786 (2021). https://doi.org/10.1007/s10483-021-2725-7

    Article  MathSciNet  Google Scholar 

  33. Li, L., Hu, Y., Li, X.: Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int. J. Mech. Sci. 115–116, 135–144 (2016)

    Article  Google Scholar 

  34. Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)

    Article  MathSciNet  Google Scholar 

  35. Li, L., Li, X., Hu, Y.: Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016)

    Article  Google Scholar 

  36. Nematollahi, M.S., Mohammadi, H., Nematollahi, M.A.: Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach. Microstructures. 111, 944–959 (2017)

    Article  Google Scholar 

  37. Li, L., Hu, Y.: Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory. Compos. Struct. 172, 242–250 (2017)

    Article  Google Scholar 

  38. Sahmani, S., Aghdam, M.M.: Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. J. Biomech. 65, 49–60 (2017)

    Article  Google Scholar 

  39. Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)

    Article  MathSciNet  Google Scholar 

  40. Liua, H., Lvb, Z., Wu, H.: Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory. Compos. Struct. 214, 47–61 (2019)

    Article  Google Scholar 

  41. Chu, L., Dui, G., Zheng, Y.: Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory. Eur. J. Mech. A-Solid. 82, 103999 (2020)

    Article  MathSciNet  Google Scholar 

  42. Jalaei, M.H., Thai, H.-T., Civalek, Ӧ: On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022). https://doi.org/10.1016/j.ijengsci.2022.103629

    Article  MathSciNet  Google Scholar 

  43. Li, L., Hu, Y.: Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 107, 77–97 (2016)

    Article  MathSciNet  Google Scholar 

  44. Şimşek, M.: Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory. Compos. Struct. 224, 111041 (2019)

    Article  Google Scholar 

  45. Askes, H., Aifantis, E.C.: Gradient elasticity theories in statics and dynamics-A unification of approaches. Int. J. Fracture. 139, 297–304 (2006)

    Article  Google Scholar 

  46. Polizzotto, C.: A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49(15–16), 2121–2137 (2012)

    Article  Google Scholar 

  47. Mousavi, S.M., Paavola, J., Reddy, J.N.: Variational approach to dynamic analysis of third-order shear deformable plates within gradient elasticity. Meccanica 50(6), 1537–1550 (2015). https://doi.org/10.1007/s11012-015-0105-4

    Article  MathSciNet  Google Scholar 

  48. Yaghoubi, S.T., Mousavi, S.M., Paavola, J.: Strain and velocity gradient theory for higher-order shear deformable beams. Arch. Appl. Mech. 85(7), 877–892 (2015). https://doi.org/10.1007/s00419-015-0997-4

    Article  Google Scholar 

  49. Guo, S., He, Y., Liu, D., Lei, J., Shen, L., Li, Z.: Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect. Int. J. Mech. Sci. 119, 88–96 (2016)

    Article  Google Scholar 

  50. Fernandes, R., Mousavi, M., El-Borgi, S.: Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory. Acta Mech. 227, 2657–2670 (2016)

    Article  MathSciNet  Google Scholar 

  51. Fernandes, R., El-Borgi, S., Mousavi, S.M., Reddy, J.N., Mechmoum, A.: Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium. Phys. E Low Dimens. Syst. Nanostructures. 88, 18–25 (2017)

    Article  Google Scholar 

  52. El-Borgi, S., Rajendran, P., Friswell, M.I., Trabelssi, M., Reddy, J.N.: Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory. Compos. Struct. 186, 274–292 (2018)

    Article  Google Scholar 

  53. Ouakad, H.M., El-Borgi, S., Mousavi, S.M., Friswell, M.I.: Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory. Appl. Math. Model. 62, 207–222 (2018)

    Article  MathSciNet  Google Scholar 

  54. Ma, T., Mu, A.: Study on the Stability of Functionally Graded Simply Supported Fluid-Conveying Microtube under Multi-Physical Fields. Micromachines. 13, 895 (2022). https://doi.org/10.3390/mi13060895

    Article  Google Scholar 

  55. Hoffman, W. P., Upadhya, K.: The universal applications of microtubes and microtube composites. NASA, Washignton, Technology 2003: The Fourth National Technology Transfer Conference and Exposition. V 1.

  56. Lim, C.W., Niu, J.C., Yu, Y.M.: Nonlocal stress theory for buckling instability of nanotubes: new predictions on stiffness strengthening effects of nanoscales. J. Comput. Theor. Nanosci. 7, 2104–2111 (2010)

    Article  Google Scholar 

  57. Lim, C.W., Li, C., Yu, J.L.: Free torsional vibration of nanotubes based on nonlocal stress theory. J. Sound Vib. 331, 2798–2808 (2012)

    Article  Google Scholar 

  58. Zhu, X., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 178, 87–96 (2017)

    Article  Google Scholar 

  59. She, G.L., Yuan, F.G., Ren, Y.R.: On wave propagation of porous nanotubes. Int. J. Eng. Sci. 130, 62–74 (2018)

    Article  MathSciNet  Google Scholar 

  60. Ghayesh, M.H., Farajpour, A.: Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory. Int. J. Eng. Sci. 129, 84–95 (2018)

    Article  MathSciNet  Google Scholar 

  61. Karami, B., Janghorban, M.: On the dynamics of porous nanotubes with variable material properties and variable thickness. Int. J. Eng. Sci. 136, 53–66 (2019)

    Article  MathSciNet  Google Scholar 

  62. Xiao, W.S., Dai, P.: Static analysis of a circular nanotube made of functionally graded bi-semi-tubes using nonlocal strain gradient theory and a refined shear model. Eur. J. Mech. A/Solids 82, 103979 (2020)

    Article  MathSciNet  Google Scholar 

  63. Babaei, H., Eslam, M.R.: Size-dependent vibrations of thermally pre/post-buckled FG porous micro-tubes based on modified couple stress theory. Int. J. Mech. Sci. 180, 105694 (2020)

    Article  Google Scholar 

  64. Babaei, H., Eslam, M.R.: On nonlinear vibration and snap-through stability of porous FG curved micro-tubes using two-step perturbation technique. Compos. Struct. 247, 112447 (2020)

    Article  Google Scholar 

  65. Xu, W., Pan, G., Moradi, Z., Shafiei, N.: Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution. Compos. Struct. 275, 114395 (2021)

    Article  Google Scholar 

  66. Herisanu, N., Marinca, V.: An effective analytical approach to nonlinear free vibration of elastically actuated microtubes. Meccanica 56, 813–823 (2021). https://doi.org/10.1007/s11012-020-01235-w

    Article  MathSciNet  Google Scholar 

  67. Lu, L., Wang, S., Li, M., Guo, X.: Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets. Compos. Struct. 272, 114231 (2021)

    Article  Google Scholar 

  68. Lu, L., She, G.-L., Guo, X.: Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection. Int. J. Mech. Sci. 199, 106428 (2021)

    Article  Google Scholar 

  69. Bian, P., Qing, H.: Torsional static and vibration analysis of functionally graded nanotube with bi-Helmholtz kernel based stress-driven nonlocal integral model. Appl. Math. Mech. -Engl. Ed. 42(3), 425–440 (2021)

    Article  MathSciNet  Google Scholar 

  70. Zhao, X., Zheng, S., Li, Z.: Size-dependent nonlinear bending and vibration of flexoelectric nanobeam based on strain gradient theory. Smart Mater. Struct. 28, 075027 (2019)

    Article  Google Scholar 

  71. Yang, X.D., Lim, C.W.: Nonlinear vibrations of nano-beams accounting for nonlocal effect using a multiple scale method. Sci. China Ser E Technol Sci. 52, 617–621 (2009)

    Article  Google Scholar 

  72. Hadji, L., Avcar, M.: Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory. Adv. Nano Res. 10(3), 281–293 (2021). https://doi.org/10.12989/ANR.2021.10.3.281

    Article  Google Scholar 

  73. Sahmani, S., Safaei, B.: Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects. Thin-Walled Struct. 140, 342–356 (2019). https://doi.org/10.1016/j.tws.2019.03.045

    Article  Google Scholar 

  74. Mahmoudpour, E., Hosseini-Hashemi, S.H., Faghidian, S.A.: Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Appl. Math. Model. 57, 302–315 (2018). https://doi.org/10.1016/j.apm.2018.01.021

    Article  MathSciNet  Google Scholar 

  75. Qing, H., Wei, L.: Linear and nonlinear free vibration analysis of functionally graded porous nanobeam using stress-driven nonlocal integral model. Commun. Nonlinear Sci. Numer. Simul. 109, 106300 (2022). https://doi.org/10.1016/j.cnsns.2022.106300

    Article  MathSciNet  Google Scholar 

  76. Uzun, B., Yaylı, M.O.: Porosity dependent torsional vibrations of restrained FG nanotubes using modified couple stress theory. Mater. Today Commun. 32, 103969 (2022)

    Article  Google Scholar 

  77. She, G.L., Yuan, F.G., Ren, Y.R., Xiao, W.S.: On buckling and postbuckling behavior of nanotubes. Int. J. Eng. Sci. 121, 130–142 (2017)

    Article  MathSciNet  Google Scholar 

  78. Yang, T.-Z., Ji, S., Yang, X.-D., Fang, B.: Microfluid-induced nonlinear free vibration of microtubes. Int. J. Eng. Sci. 76, 47–55 (2014)

    Article  Google Scholar 

  79. Hua, K., Wang, Y.K., Dai, H.L., Wanga, L., Qiana, Q.: Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory. Int. J. Eng. Sci. 105, 93–107 (2016)

    Article  MathSciNet  Google Scholar 

  80. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. John Wiley and Sons, New Jersey (2004)

    Book  Google Scholar 

  81. Emam, S.A., Nayfeh, A.H.: Non-linear response of buckled beams to 1:1 and 3:1 internal resonances. Int. J. Non. Linear. Mech. 52, 12–25 (2013)

    Article  Google Scholar 

  82. Azrar, L., Benamar, R., White, R.G.: A semi-analytical approach to the non-linear dynamic response problem of S-S and C-C beams at large vibration amplitudes part 1: general theory and application to the single mode approach to free and forced vibration analysis. J. Sound Vib. 224(2), 183–207 (1999)

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

S. Ziaee: Designing the work; deriving the formulas; solving the governing equation; analyzing and interpreting data; drafting the work; and revising it for submission.

Corresponding author

Correspondence to S. Ziaee.

Ethics declarations

Conflict of interest

The author declares that she has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaee, S. Nonlinear free vibration of pre-buckled PFG micro/nanotubes via nonlocal strain and velocity gradient theory. Arch Appl Mech (2024). https://doi.org/10.1007/s00419-024-02586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-024-02586-6

Keywords

Navigation