Skip to main content
Log in

An extension of the natural force density method to 3D problems

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper introduces the 3DNFDM method, which extends the natural force density method (NFDM) to three-dimensional problems. The NFDM was first proposed by Pauletti in 2006, as a method for finding configurations of membranes and funicular shell structures, providing viable equilibrium geometries in a single linear equilibrium analysis (Pauletti, in: Proceedings of the IASS symposium/APCS conference—New Olympics, New Shell and Spacial Structures, Beijing, 2006; Pauletti and Pimenta Comput Methods Appl Mech Eng 197(49):4419–4428, 2008. https://doi.org/10.1016/j.cma.2008.05.017). It is an extension of the force density method (FDM), which was originally proposed by Linkwitz (IASS Pacific symposium on tension structures and space frame, Tokyo, pp 145–158, 1971), Linkwitz and Schek (Ingenieur-Archiv, 40:145–158, 1971. https://doi.org/10.1007/BF005321463) for the shape finding of cable nets and has since become ubiquitous in the field of membrane design. Directly treating the continuous membrane problem, the NFDM overcomes limitations of the original FDM, by dealing with irregular meshes and accurately representing continuous surface stress fields. The 3DNFDM represents a further extension of the FDM to three-dimensional problems, which allows for the exploration of a novel class of shape finding problems, generating relevant viable volumetric shapes. Some of these shapes may not be readily interpreted by common sense, but we believe that the 3DNFDM unveils new possibilities for shape finding, as demonstrated by the elementary problems investigated in this foundational paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Pauletti, R.M.O.: An extension of the force density procedure to membrane structures. In: Proceedings of the IASS Symposium/APCS Conference -New Olympics, New Shell and Spacial Structures, Beijing (2006)

  2. Pauletti, R.M.O., Pimenta, P.M.: The natural force density method for the shape finding of taut structures. Comput. Methods Appl. Mech. Eng. 197(49), 4419–4428 (2008). https://doi.org/10.1016/j.cma.2008.05.017

    Article  Google Scholar 

  3. Linkwitz, K.: New methods for the determination of cutting pattern of prestressed cable nets and their application to the olympic roofs munich. In: IASS Pacific Symposium on Tension Structures and Space Frame, Tokyo, 78,145–158 (1971)

  4. Linkwitz, K., Schek, H.-J.: Einige Bemerkungen zur Berechnung von vorgespannten Seilnetzkonstruktionen. Ingenieur-Archiv 40, 145–158 (1971). https://doi.org/10.1007/BF005321463

    Article  Google Scholar 

  5. Otto, F.: Das Hängende Dach. Gestalt und Struktur. Republished in 1990 by Verlag der Kunst, ISBN-10: 3421029873). Bauwelt Verlag, Berlin (1954)

  6. Otto, F. (ed.): Zugbeanspruchte Konstruktionen. Ullstein Fachverlag Verlag, Vol. 1 (1962) and Vol. 2 (1966). English Translation: Tensile Structures, Vols. 1 and 2, The MIT Press, 1973, ISBN-10: 0262650053. Ullstein Fachverlag Verlag, Berlin (1962)

  7. Otto, F. (ed.): Lufthallenhandbuch - Air Hall Handbook. Bilingual Edition. ISBN-10: 3782820150. Bauwelt Verlag, Berlin (1983)

  8. Linkwitz, K.: Formfinding by the direct approach and pertinent strategies for the conceptual design of prestressed and hanging structures. Int. J. Space Struct. 14(2), 73–87 (1999). https://doi.org/10.1260/0266351991494713

    Article  Google Scholar 

  9. Gründig, L., Moncrieff, E., Singer, P., Ströbel, D.: A history of the principal developments and applications of the force density method in Germany 1970–1999. In: Proceedings of IASS-IACM 2000 Symposium (2016). International Association for Shell and Spatial Structures (IASS)

  10. Schek, H.-J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3(1), 115–134 (1974). https://doi.org/10.1016/0045-7825(74)90045-0

    Article  MathSciNet  Google Scholar 

  11. Llorens, J.I.: Report on the VI International Conference on Textile Composites and Inflatable Structures - STRUCTURAL MEMBRANES 2013. TENSINEWS–The Newsletter of the European Based Network for the Design and Realization of Tensile Structures (26), 6–8 (2014)

  12. Zhou, J., Chen, W., Hu, J., Zhao, B., Zhang, T.: Force finding of cable-strut structures using a symmetry-based method. Arch. Appl. Mech. 89, 1473–1484 (2019). https://doi.org/10.1007/s00419-019-01517-0

    Article  Google Scholar 

  13. Chen, Y., Yan, J., Feng, J.: Nonlinear form-finding of symmetric cable-strut structures using stiffness submatrices associated with full symmetry subspace. Arch. Appl. Mech. 90, 1783–1794 (2020). https://doi.org/10.1007/s00419-020-01696-1

    Article  Google Scholar 

  14. Liew, A.: Constrained force density method optimisation for compression-only shell structures. Structures 28, 1845–1856 (2020). https://doi.org/10.1016/j.istruc.2020.09.078

    Article  Google Scholar 

  15. Trinh, D.T.N., Lee, S., Kang, J., Lee, J.: Force density-informed neural network for prestress design of tensegrity structures with multiple self-stress modes. Eur. J. Mech. A. Solids 94, 104584 (2022). https://doi.org/10.1016/j.euromechsol.2022.104584

    Article  MathSciNet  Google Scholar 

  16. Zhao, Z., Yu, D., Zhang, T., Gao, H.: Form-finding and optimization for free form grid structures supported by branching columns based on updated force density method. Structures 44, 1190–1203 (2022). https://doi.org/10.1016/j.istruc.2022.08.063

    Article  Google Scholar 

  17. Zhang, L.-Y., Jiang, J.-H., Wei, K., Yin, X., Xu, G.-K., Zhang, J.: Self-equilibrium and super-stability of rhombic truncated regular tetrahedral and cubic tensegrities using symmetry-adapted force-density matrix method. Int. J. Solids Struct. 233, 111215 (2021). https://doi.org/10.1016/j.ijsolstr.2021.111215

    Article  Google Scholar 

  18. Wang, Y., Xu, X., Luo, Y.: Form-finding of tensegrity structures via rank minimization of force density matrix. Eng. Struct. 227, 111419 (2021). https://doi.org/10.1016/j.engstruct.2020.111419

    Article  Google Scholar 

  19. S̄amec, E., Gidak, P., Fresl, K.: Iterated Ritz and conjugate gradient methods as solvers in constrained form-finding: a comparison. Heliyon 7(5), 07011 (2021). https://doi.org/10.1016/j.heliyon.2021.e07011

    Article  Google Scholar 

  20. Zhang, S., Zhang, S., Zhang, Y., Ye, J.: Force density sensitivity form-finding design method for cable-mesh reflector antennas considering interactive effects between cable network and supporting truss. Eng. Struct. 244, 112722 (2021). https://doi.org/10.1016/j.engstruct.2021.112722

    Article  Google Scholar 

  21. Wang, X., Zhang, J., Cai, J., Feng, J.: An improved energy method for form-finding of mesh reflectors. Arch. Appl. Mech. 92(10), 2795–2812 (2022). https://doi.org/10.1007/s00419-021-02085-y

    Article  Google Scholar 

  22. Marbaniang, A.L., Dutta, S., Ghosh, S.: Updated weight method: an optimisation-based form-finding method of tensile membrane structures. Struct. Multidiscip. Optim. 65(6), 169 (2022)

    Article  MathSciNet  Google Scholar 

  23. Zhao, Z., Yu, D., Zhang, T., Cai, Q.: Intelligent design algorithm for branching structures based on updated force density method. J. Build. Eng. 57, 104858 (2022). https://doi.org/10.1016/j.jobe.2022.104858

    Article  Google Scholar 

  24. Oberbichler, T., Bletzinger, K.U.: CAD-integrated form-finding of structural membranes using extended Catmull-Clark subdivision surfaces. Comput. Aided Des. 151, 103360 (2022). https://doi.org/10.1016/j.cad.2022.103360

    Article  MathSciNet  Google Scholar 

  25. Li, X., Xue, S., Liu, Y.: A novel form finding method for minimum surface of cable net. J. Build. Eng. 48, 103939 (2022). https://doi.org/10.1016/j.jobe.2021.103939

    Article  Google Scholar 

  26. Marbaniang, A.L., Kabasi, S., Ghosh, S.: Form-finding and determining geodesic seam lines using the updated weight method for tensile membrane structures with strut and anchorage supports. Struct. Multidiscipl. Optimiz. 66, 190 (2023). https://doi.org/10.1007/s00158-023-03645-2

    Article  MathSciNet  Google Scholar 

  27. Fan, L., Xu, R., Shi, P., Feng, X., Chen, Y.: Simplified form-finding for tensegrity structures through reference joints of symmetry orbits. Structures 49, 1157–1167 (2023). https://doi.org/10.1016/j.istruc.2023.02.006

    Article  Google Scholar 

  28. Argyris, J.H., Dunne, P.C., Angelopoulos, T., Bichat, B.: Large natural strains and some special difficulties due to non-linearity and incompressibility in finite elements. Comput. Methods Appl. Mech. Eng. 4(2), 219–278 (1974). https://doi.org/10.1016/0045-7825(74)90035-8

    Article  Google Scholar 

  29. Pauletti, R.M.O.: The natural force density method . In: Proceedings of the IABSE-IASS Symposium London 2011 Symposium (2011). IABSE / IASS

  30. Souza, M.S.V., Pauletti, R.M.O.: Parametric design and optimization of shell structures using the natural force density method. Proc. IASS Annual Symp. 2016(8), 1–10 (2016)

    Google Scholar 

  31. Pauletti, R.M.O., Fernandes, F.L.: An outline of the natural force density method and its extension to quadrilateral elements. Int. J. Solids Struct. 185–186, 423–438 (2020). https://doi.org/10.1016/j.ijsolstr.2019.09.003

    Article  Google Scholar 

  32. Souza, M.S.V., Pauletti, R.M.O.: An overview of the natural force density method and its implementation on an efficient parametric computational framework. Curved Layered Struct. 8(1), 47–60 (2021). https://doi.org/10.1515/cls-2021-0005

    Article  Google Scholar 

  33. Lee, K.S., Han, S.E.: Advanced shape finding algorithm of force density method based on FEM. Adv. Steel Constr. 7(4), 313–329 (2011)

    Google Scholar 

  34. Tsiatas, G.C., Katsikadelis, J.T.: Nonlinear analysis of elastic space cable-supported membranes. Eng. Anal. Boundary Elem. 35(10), 1149–1158 (2011). https://doi.org/10.1016/j.enganabound.2011.05.005

    Article  MathSciNet  Google Scholar 

  35. Descamps, B., Filomeno Coelho, R., Ney, L., Bouillard, P.: Multicriteria optimization of lightweight bridge structures with a constrained force density method. Comput. Struct. 89(3), 277–284 (2011). https://doi.org/10.1016/j.compstruc.2010.11.010

    Article  Google Scholar 

  36. Gosling, P., Zhang, L.: A linear strain, curvature-driven triangular element for the analysis of membrane structures. Comput. Model. Eng. Sci. (CMES) 83(2), 97–141 (2012)

    MathSciNet  Google Scholar 

  37. Veenendaal, D., Block, P.: An overview and comparison of structural form finding methods for general networks. Int. J. Solids Struct. 49(26), 3741–3753 (2012). https://doi.org/10.1016/j.ijsolstr.2012.08.008

    Article  Google Scholar 

  38. Gellin, S., Pauletti, R.M.O.: Necking limits of conoid membrane structures with variable stress ratio. Eng. Struct. 50, 90–95 (2013). https://doi.org/10.1016/j.engstruct.2012.09.023

    Article  Google Scholar 

  39. Tur, M., García, E., Baeza, L., Fuenmayor, F.J.: A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Eng. Struct. 71, 234–243 (2014). https://doi.org/10.1016/j.engstruct.2014.04.015

    Article  Google Scholar 

  40. Yang, C., Shen, Y.-B., Luo, Y.-Z.: An efficient numerical shape analysis for light weight membrane structures. J. Zhejiang Univ., Sci., A 15(4), 255–271 (2014). https://doi.org/10.1631/jzus.A1300245

    Article  Google Scholar 

  41. Greco, L., Impollonia, N., Cuomo, M.: A procedure for the static analysis of cable structures following elastic catenary theory. Int. J. Solids Struct. 51(7), 1521–1533 (2014). https://doi.org/10.1016/j.ijsolstr.2014.01.001

    Article  Google Scholar 

  42. Kmet, S., Mojdis, M.: Time-dependent analysis of cable nets using a modified nonlinear force-density method and creep theory. Comput. Struct. 148, 45–62 (2015). https://doi.org/10.1016/j.compstruc.2014.11.004

    Article  Google Scholar 

  43. Kim, N.-I., Thai, S., Lee, J.: Nonlinear elasto-plastic analysis of slack and taut cable structures. Eng. Comput. 32(4), 615–627 (2016). https://doi.org/10.1007/s00366-016-0440-7

    Article  Google Scholar 

  44. Li, T., Deng, H., Tang, Y.: Mathematical relationship between mean cable tensions and structural parameters of deployable reflectors. Aerosp. Sci. Technol. 56, 205–211 (2016). https://doi.org/10.1016/j.ast.2016.08.003

    Article  Google Scholar 

  45. Xu, R., Li, D., Liu, W., Jiang, J., Liao, Y., Wange, J.: Modified nonlinear force density method for form-finding of membrane SAR antenna. Struct. Eng. Mech. 54(6), 1045–1059 (2015). https://doi.org/10.12989/sem.2015.54.6.1045

    Article  Google Scholar 

  46. Yee, H., Choong, K., Hadi, M.A.: Sustainable development of tensioned fabric green structure in the form of Enneper. Int. J. Mater. Mech. Manufact. 3(2), 125–128 (2015)

    Google Scholar 

  47. Tan, R.P., Pauletti, R.M.O.: A comparison of alternative form finding methods in ixCube 4.10 program. In: IASS 2016 Tokyo Symposium: Spatial Structures in the 21st Century (2016)

  48. Mikula, K., Remešíková, M., Novysedlák, P.: Truss structure design using a length-oriented surface remeshing technique. Discrete Contin. Dyn. Syst. - S 8(5), 933–951 (2015). https://doi.org/10.3934/dcdss.2015.8.933

    Article  MathSciNet  Google Scholar 

  49. Li, N., Lu, J., Zong, W., Fan, Y.: Form-finding optimization methods for free-form reticulated shells: reverse realization and numerical simulation. Adv. Mech. Eng. 9(11), 1687814017737256 (2017)

    Article  Google Scholar 

  50. Marmo, F., Rosati, L.: Reformulation and extension of the thrust network analysis. Comput. Struct. 182, 104–118 (2017). https://doi.org/10.1016/j.compstruc.2016.11.016

    Article  Google Scholar 

  51. Tang, Y., Li, T.: Equivalent-force density method as a shape-finding tool for cable-membrane structures. Eng. Struct. 151, 11–19 (2017). https://doi.org/10.1016/j.engstruct.2017.08.010

    Article  Google Scholar 

  52. Veenendaal, D., Bakker, J., Block, P.: Structural design of the flexibly formed, meshreinforced concrete sandwich shell roof of nest hilo. J. Int. Assoc. Shell Spatial Struct. 58(1), 23–38 (2017). https://doi.org/10.20898/j.iass.2017.191.847

    Article  Google Scholar 

  53. Asadi, H., Hariri-Ardebili, M.A., Mirtaheri, M., Zandi, A.P.: Force density ratios of flexible borders to membrane in tension fabric structures. Struct. Eng. Mech. 67(6), 555–563 (2018). https://doi.org/10.12989/sem.2018.67.6.555

    Article  Google Scholar 

  54. Shimoda, M., Yamane, K., Shi, J.-X.: Non-parametric shape optimization method for designing cable net structures in form finding and stiffness maximization problems. Int. J. Solids Struct. 146, 167–179 (2018). https://doi.org/10.1016/j.ijsolstr.2018.03.027

    Article  Google Scholar 

  55. Zienkievicz, O.C., Taylor, R.L.: The Finite Element Method, 4th edn. McGraw-Hill, London (1989)

    Google Scholar 

  56. Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs, New Jersey (1996)

    Google Scholar 

  57. Argyris, J.H., Kelsey, S.: Energy Theorems and Structural Analysis. Butterworths, London (1968)

    Google Scholar 

  58. Przemieniecki, J.S.: Theory of Matrix Structural Analysis. MaGraw-Hill, New York (1968)

    Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

RMOP conceived and implemented the new method (3DNFDM), based on his previous research on the NFDM, generated the presented data and wrote the manuscript. VFA reviewed the formulation and developed an independent computer implementation, also based on his own independent research on shape finding problems, which validated the consistency of the new method.

Corresponding author

Correspondence to Ruy Marcelo O. Pauletti.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

This article does no contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauletti, R.M.O., Arcaro, V.F. An extension of the natural force density method to 3D problems. Arch Appl Mech (2024). https://doi.org/10.1007/s00419-024-02580-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-024-02580-y

Keywords

Navigation